口頭発表要旨

Lecture Abstracts

第一日目 11月10日(火) 日本語セッション

Day 1 (Nov. 10, Tue.) (Japanese Session)

1L1 ランタノイドプローブを用いたタンパク質複合体の 立体構造解析 ○斉尾智英¹、横地政志²、久米田博之²、稲垣冬彦² ¹北海道大学大学院生命科学院、²北海道大学大学院薬学研究科

PCS-based structure determinations of protein-protein complexes

Tomohide Saio¹, Masashi Yokochi², Hiroyuki Kumeta², Fuyuhiko Inagaki²
¹Graduate School of Life Science, Hokkaido University, and
²Graduate School of Pharmaceutical Sciences, Hokkaido University

A simple and fast method for protein-protein docking using pseudo-contact shifts (PCSs) and ${}^{1}\text{H}^{N/15}\text{N}$ chemical shift perturbation data is presented. The PCSs are induced by a paramagnetic lanthanide ion that is fixed to the target protein using a lanthanide binding peptide tag attached via two linking points. The ${}^{1}\text{H}^{N/15}\text{N}$ chemical shift perturbation data is transformed into contact-surface restraints, that is, highly ambiguous intermolecular distance restraints. The method is demonstrated with p62 PB1-PB1 complex, which forms front-to-back 20kDa of homo-dimer. The monomer structures were treated as rigid bodies and docked using backbone PCSs and backbone chemical shift perturbation data.

【序論】

NMR によるタンパク質複合体の立体構造解析においては、シグナル帰属や分子間 NOE 取得などが困難となる場合が多い。そのような場合、ランタノイドプローブか ら得られる PCS や RDC などの距離・角度情報が有用になる。常磁性ランタノイドイ オンを対象タンパク質に結合させることで、ランタノイドイオンを中心として約 40 Å 以内という広範囲におけるタンパク質原子の位置情報を得ることができる。カルシウ ムなどの金属イオンを結合するタンパク質に対してはランタノイドイオンと内在性 イオンを置き換えることでランタノイドプローブが応用可能であるが(1)、他の一般的 なタンパク質に対してはランタノイドイオンをタンパク質に固定化するタグ (Lanthanide Binding Tag: LBT) が必要である。私たちは、ランタノイド結合ペプチド をタンパク質に 2 点で固定することによって、より強固にランタノイドイオンを固定 できる LBT を開発した(2)。今回はさらに、2 点固定化 LBT を用いたランタノイドプ ローブを応用し、p62 PB1 ホモダイマーの立体構造決定を行った。p62 はオートファ

key words: 常磁性ランタノイド, ランタノイド結合タグ, pseudo-contact shift oさいお ともひで、よこち まさし、くめた ひろゆき、いながき ふゆひこ ジーにおける選択的タンパク質分解に関わるマルチドメインタンパク質である。p62 は C 末端の UBA ドメインを介してユビキチンを認識することによりユビキチン化さ れたタンパク質を選択的に結合し、N 末端の PB1 ドメインを介した自己会合により多 量化し、巨大な変性タンパク質凝集体を形成する。PB1 ドメインを介した多量化は、 凝集体の形成だけではなく凝集体のオートファゴソームへの移行においても重要で あることが明らかになっている。本研究では p62 PB1 ドメインの保存された相互作用 残基に対してアミノ酸変異を導入することで多量化を抑制し、1:1 のダイマーを形成 するコンストラクトを作成した。LBT により固定化されたランタノイドイオンからの PCS データと、主鎖アミドシグナルの化学シフト摂動データを用い、p62 PB1 単体構 造をドッキングすることによって複合体構造を決定した。

【手法】

A) コンストラクト作成

p62 PB1 domain には OPCA モチーフから構成さ れる酸性面と、保存されたリ ジン残基から構成される塩 基性面が存在し、両者の結合 によって自己会合がおこる (3)。本研究では、OPCA モチ ーフと塩基性面のそれぞれ にアミノ酸変異を導入し、 DR変異体(D67A/D69R)とKE 変異体(K7E/R94A)を作成し た(Fig. 1)。DR+KE が 1:1 の ダイマーを形成することを 分析超遠心により確認した。 B) LBT の 2 点固定化

Fig. 1 Schematic overview of the preparation of the LBT-DR and the KE.

DR 変異体に対して、次のような手順で LBT を 2 点固定化した(2)。① DR 変異体 表面にシステインを導入し、ランタノイド結合ペプチド(CYVDTNNDGAYEGDEL)を N 末端に融合したコンストラクトを作成する。これを以降 LBT-DR と呼ぶ。② LBT-DR を発現・精製したのち、TEV protease により消化して LBT の N 末端システイ ンを露出させる。③ DTNB により酸化し、LBT N 末端のシステインと DR 変異体表 面のシステインとをジスルフィド結合によって架橋する(Fig.1)。

C) 構造計算

DR 変異体単体の立体構造を rigid-body として扱い、PCS データと結合面の情報に 基づいて Xplor-NIH を用いたドッキング計算を行った。DR を固定し、KE をランダム な位置に配置した 100 個の座標を発生させ、そこから束縛条件を加えて構造計算を行った。結合面の情報は、LBT-DR/KE 複合体形成に伴う KE の主鎖アミドシグナルの化 学シフト変化から取得した。化学シフト変化が 0.5 ppm 以上であった KE 中の残基が 結合面を構成していると規定し、それらの残基中の原子が DR 中のいずれかの原子と 近づくように制限を加えた。実際には、KE 中の特定の原子と DR 中の全原子との間 の NOE 制限として扱い、原子間の距離 r の-6 乗平均に対して距離制限を適用した。 r⁻⁶平均を用いることで、数個の原子対タンパク質中の全原子という曖昧な距離制限を 加えることを可能にしている。

¹⁵N LBT-DR/unlabeled KE または unlabeled LBT-DR/¹⁵N KE それぞれに対して1等 量のランタノイド(LuCl₃, DyCl₃, TbCl₃, ErCl₃, TmCl₃)を滴下し、¹H-¹⁵N HSQC スペクト ルを測定して PCS を観測した。数種のアミノ酸選択¹⁵N ラベルサンプルを用いてスペ クトルを簡略化し、PCS の帰属の補助に用いた。構造計算に PCS データを用いるた めには DR に対するランタノイドイオンの座標を求める必要がある。そこで、磁化率 テンソル計算プログラム numbat を用い、Dy³⁺, Tb³⁺, Er³⁺, Tm³⁺の 4 種の常磁性ランタ ノイドから観測される PCS データに基づいてイオンの位置を決定した。

【結果・考察】

Xplor-NIH を用い、Tb³⁺と Tm³⁺滴下時に観測された計 459 個の PCS と、化学シフト 摂動マッピングから得た結合面の情報に基づいてドッキング計算を行った(Fig. 2)。 PCS の isosurface は対象性を持ち、磁化率テンソルの主軸を中心に 180°回転させた isosurface はもとの isosurface と重なる(Fig. 3)。そのため、1 つの PCS データセットか

Fig. 2 The docking structure of the DR/ KE complex. Ensemble of 10 lowest energy structures is displayed. These structures have an average backbone RMSD of 0.31 Å.

Fig. 3 Isosurface induced by Tb^{3+} . The principal axes of the $\Delta\chi$ -tensor are overlayed.

した解を得ることを可能にしている。

決定された立体構造の妥当性を評価するため、DR-KE 間の分子間 NOE を観測した。 ¹⁵N²H LBT-DR/unlabeled KE に対して N-NOESY を測定し、LBT-DR 主鎖アミドプロト ンと KE 側鎖プロトンの間の NOE を取得した。KE と DR の結合界面に存在する残基 間から数十個の NOE が観測され、それらはいずれもドッキング構造と矛盾しなかっ た。また、最安定構造に対する PCS の相関をとったところ、実験値と計算値はよく

対応していた(Fig. 4)。PB1-PB1 複合体形成に は OPCA-motif と保存されたリジンの静電的 ^{-1.2} 相互作用が重要であるが、今回決定した p62 PB1 複合体構造においても KEの OPCA-motif と DR の保存されたリジンが向かい合ってお り、他の PB1 と同様の結合様式であると考え られる。

一般的に、NMR によるタンパク質の立体構 造解析のためには主鎖・側鎖シグナルの帰属 や NOE 取得が必要となり、解析に時間を要す る。高分子量タンパク質やその複合体を対象 とした場合、帰属や分子間 NOE の取得にはさ らに困難になる。本研究では、主鎖アミドか

Fig. 4 Comparison between experimental and back-calculated PCS of backbone amide protons observed for LBT-LR/KE, in complex with Tb^{3+} .

ら観測される PCS データと化学シフト摂動データに基づいて単体構造をドッキング することで、複合体の構造決定をより迅速に行うことができることを示した。これま で、PCS などの常磁性プローブはヘムタンパク質やランタノイドイオンを結合できる 一部の金属結合タンパク質に対してのみ応用されているだけだった。今回私たちは、 タグを用いてランタノイドイオンを固定化することで、金属イオンを結合しない一般 的なタンパク質に対してもランタノイドプローブに基づいた立体構造解析が可能で あることを示した。

【参考文献】

- (1) Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc. 2006 128:3696-3702
- (2) Saio T, Ogura K, Yokochi M, Kobashigawa Y, Inagaki F. (2009) Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J Biomol NMR 44:157-166
- (3) Saio T, Yokochi M, Inagaki F. (2009) The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-κB signaling pathway. J Biomol NMR *in press*.

磁場配向性錯体による残余双極子相互作用の誘起

○佐藤宗太¹,諸原 理¹,山口芳樹^{2,3},加藤晃一^{2,4,5},藤田 誠^{1,5}
¹東大院工
²名市大院薬
³理化学研究所
⁴分子科学研究所・岡崎統合バイオサイエンスセンター
⁵CREST

Induction of Residual Dipole Couplings by Magnetically Aligned Coordination Complexes

OSota Sato¹, Osamu Morohara¹, Yoshiki Yamaguchi^{2, 3}, Koichi Kato^{2, 4, 5}, and Makoto Fujita^{1, 5}

¹School of Engineering, The Univ. of Tokyo ²Graduate School of Pharmaceutical Sciences, Nagoya City Univ. ³RIKEN ⁴Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences

⁵CREST

Residual dipolar coupling (RDC) is observed by solution NMR for molecules which partially orient to magnetic field, which affords useful structural information. Though various alignment media have been investigated, such as liquid crystalline, bicelle, and phage, such polymeric structures make the prediction and control of the orienting behavior of the analyte difficult. A single molecule with a well-defined structure accumulating aromatic moieties in a parallel direction is a promising candidate as a molecular aligning material because an aromatic ring diamagnetically orients, and the accumulation effect is expected to strengthen the orienting property. We synthesized hollow cage complex with aromatic units and found that the complex oriented. Furthermore, we succeeded to observe RDC for small organic guest, which hardly shows RDC by itself, via the encapsulation in the host complex.

一般に溶液中において分子は速い回転運動をしており、溶液NMRにおいて双極子相 互作用は観測されない。しかし、液晶やバイセル、ファージといった磁場配向性を有 する物質を共存させると、衝突などの相互作用を通じて回転運動に異方性が誘起され、 双極子相互作用が完全には消えきらずに観測される(残余双極子相互作用:Residual Dipole Coupling、以下RDCと表記)ことが知られている。RDC解析からは、従来の化 学シフト値、スピン結合定数、NOEといった情報からは得られない、NMR観測可能な2 つの核種を結ぶベクトルと分子内座標との角度情報を引き出すことができ、新しい構 造解析法としてタンパク質などの生体高分子の構造解析に多用されてきている。しか

残余双極子相互作用,反磁性磁場配向,錯体

○さとうそうた,もろはらおさむ,やまぐちよしき,かとうこういち,ふじたまこと

し、上述した磁場配向性材料は、分子量や立体構造に分布があり、また、解析対象分子との定まった相互作用の様式を持たないために、解析対象分子の配向性を予測・制 御することが難しい。一義構造を有する、分子性の磁場配向性材料を開発できればこの問題を根本的に解決できるが、一般に単分子での磁場配向性は弱いので、いかに効率よく磁場配向する材料を開発し、さらに、いかに効率よく解析対象分子を配向させ るかが重要である。

今回我々は、芳香族分子が示す反磁性磁場配向に着目し、複数の芳香族分子を方向 を揃えて集積することで磁場配向性を制御することを検討した。さらに、この磁場配 向性分子をホストとして用い、ゲスト分子の磁場配向を誘起することに成功した。

はじめに、単一構造を持ち、設計性が高い磁場配向性分子として、自己集合によっ て構築される錯体1の磁場配向性を確認した。分子が磁場配向すると、スピン-スピ ン結合J値にRDC D値が加わって観測され、このD値は磁場強度の2乗Bに比例すること が知られている。そこで、300-920 MHzのNMR装置を用いて¹Jのスプリット値の測定を 行ったところ、磁場配向性を示すことがわかった。2は1よりも大きいRDCが観測さ れより強い磁場配向性を示すことから、芳香環の集積数を変えることで磁場配向の度 合を制御できることもわかった。芳香環をプリズム状に揃えた錯体3も同様に磁場配 向性を示すことがわかり、磁場に対し芳香環を平行に保つ構造であれば磁場配向する ことが示された。

次に、錯体1および2の内部に包接されたゲスト分子、ピレンの磁場配向性を検討 した。ピレンは単独ではほとんど磁場配向性を示さないが、配向性錯体にホストーゲ ストの様式で包接することにより、錯体と一体となって一分子としてふるまい、その 結果RDCが容易に観測できることがわかった。RDCの大きさは、包接錯体の芳香環集積 数に依存することがわかり、分子レベルでの磁場配向性ホストの構造制御がRDC解析 に有用であることがわかった。

本手法はゲスト分子の解析に特化しており、配向材料の種類が限られている小分子のRDC解析試薬として有用である。今後、自己集合性錯体により合成した配向分子を 利用したゲスト分子の構造解析を検討する。

 1L3 プリオンタンパク質構造変換におけるホットスポットと 抗プリオン化合物
○鎌足雄司¹,早野陽介¹,木村力¹,武藤淳二¹,石倉孝一¹,山本典 史¹,山口圭一¹,桑田一夫¹
¹岐阜大学人獣感染防御研究センター

Hot spot for pathogenic conversion of prion protein and anti-prion compounds

○Yuji O. Kamatari¹, Yosuke Hayano¹, Tsutomu Kimura¹, Junji Hosokawa-Muto¹, Takakazu Ishikura¹, Norifumi Yamamoto, Kei-ichi Yamaguchi¹, and Kazuo Kuwata¹ ¹Center for Emerging Infectious Diseases, Gifu University.

Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative disease associated with the accumulation of the disease specific conformation for prion protein. Conversion from the cellular form (PrP^C) to the scrapie form (PrP^{Sc}) is essentially a misfolding process without changing in covalent structure. So far, we have reported a variety of anti-prion compounds [1,2], and it is also reported several anti-prion compounds from other groups. In this study, we compared binding property of these compounds to PrP^C to identify a hot spot for pathogenic conversion of prion protein. NMR chemical shift perturbation experiments showed the existence of the common binding site for several compounds, helix B and B-C loop, indicated that this site may be the hot spot for the conversion. NMR studies using a series of derivatives of an anti-prion compound, GN8, also showed that increasing the binding population on the hot spot increased the anti-prion activity. Computer simulation studies indicated that fluctuation in this region is reduced by binding the compounds. In summary, anti-prion compounds that act as chemical chaperon bind to the hot spot and reduced the flexibility in this site and block to the intermediate, PrP*, which converts to PrP^{Sc}.

プリオン病は、脳の海綿状変性を特徴とする致死性の神経変性疾患である。プリオン 病の有効な治療法は確立されていない。プリオン病は、正常型プリオンタンパク質 (PrP^c)が異常型プリオンタンパク質(PrP^{sc})へ構造変換され脳へ蓄積することによ って引き起こされると考えられている。近年当センターでは、PrP^cの構造に基づいた 抗プリオン化合物開発を行っており、これまでいくつかの抗プリオン化合物を発見し てきた[1,2]。また我々以外のグループにおいてもいくつかの抗プリオン化合物が報告 されている。本研究では、これらの抗プリオン化合物の作用機構を比較した。また、 プリオンタンパク質への結合部位を NMR 化学シフト摂動法により比較することによ り、プリオンタンパク質構造変換におけるホットスポットを推定した。さらに、我々

Chemcal shift perturbation, Anti-prion compounds, Protein-compound interaction

○かまたりゆうじ,はやのようすけ,きむらつとむ,むとうじゅんじ,いしくらた かかず,やまもとのりふみ,やまぐちけいいち,くわたかずお の発見した抗プリオン化合物である GN8 の類縁体を用いた実験は、このサイトへの 結合量と抗プリオン活性との間に相関があることを示した。GN8 類縁体は天然状態の このホットスポットに結合することにより揺らぎを抑え、異常型構造への構造変換の 鍵となる中間状態 PrP*への変換を防ぐことにより抗プリオン活性を発揮していると 考えることが出来る(Fig. 1)。プリオン蛋白質と GN8 の複合体の変性のシュミレーシ ョンの結果も、GN8 結合によりこのホットスポットの揺らぎが抑えられることを示し ており[3]、この構造変換モデルを支持している。

Fig. 1. A model of inhibitory mechanism by anti-prion compounds GN8 derivatives.

[1] K. Kuwata et al. (2007) Proc Natl Acad Sci U S A 104, 11921-11926.

[2] J. Hosokawa-Muto, Y. O. Kamatari, H. K. Nakamura & K. Kuwata (2009) Antimicrob Agents Chemother 53, 765-771.

[3] N. Yamamoto & K. Kuwata (2009) J. Phys. Chem. B, 113, 12853-12856.

45kDa プロテインキナーゼVRK1のNMR構造解析

○栃尾尚哉¹,小柴生造^{1, 2},横山茂之^{1, 3}, Yoon Ho Sup⁴,木川隆則^{1, 5} ¹理研・生命分子システム基盤,²横市大・院生命ナノシステム, ³東大・院理,⁴SBS, NTU, ⁵東工大・院総理工

Structural analyses of 45 kDa protein kinase using NMR spectroscopy

○Naoya Tochio¹, Seizo Koshiba^{1, 2}, Shigeyuki Yokoyama^{1, 3}, Yoon Ho Sup⁴, and Takanori Kigawa^{1, 5}

¹*RIKEN Systems and Structural Biology Center, Kanagawa, Japan.*

²Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan.

³*Graduate School of Science, University of Tokyo, Tokyo, Japan.*

⁴School of Biological Sciences, Nanyang Technological University, Singapore.

⁵Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan.

Vaccinia related kinase 1 (VRK1) is a serine/threonine protein kinase composed of 396 amino acid residues (M.W. 45 kDa), which is known to mediate the cell response to DNA damage by phosphorylation of the p53 tumor suppressor. Toward the structure determination of the VRK1, we prepared various kinds of stable-isotope labeled samples and then tried many kinds of NMR experiments. With respect to the sample preparation, we successfully applied the cell-free protein synthesis system to produce the highly deuterated samples, the amino acid-selective labeled samples, and the Stereo-Array Isotope Labeling (SAIL) samples. As for the NMR methods, in addition to the combination

of the TROSY techniques and the various multidimensional experiments, we tried to measure the Residual Dipolar Coupling (RDC) and the Paramagnetic Relaxation Enhancement (PRE). We will discuss general aspects of structure determination of proteins with the large molecular weight by using NMR spectroscopy.

Vaccinia related kinase 1(VRK1)は、全長396 残基(分子量45kDa)からなるセリン/スレオニ ンキナーゼであり、癌抑制因子p53をリン酸化す ることによりDNA損傷への応答を制御すると考え られている。我々はこれまでに、無細胞タンパク 質合成技術を活用して、1)メチオニン、システイ ンのαプロトンを除いて、98%以上の高度重水素

Figure 1. Signaling pathway of VRK1.

プロテインキナーゼ,安定同位体標識,無細胞タンパク質合成

○とちおなおや,こしばせいぞう,よこやましげゆき,Yoon Ho Sup, きがわたかのり

- 36 -

1L4

化標識試料、2)プロリンを除いた19種のアミノ酸選択¹⁵N標識試料、ならびに、3)立体 整列標識(SAIL)試料を調製した。得られた²H、¹³C、¹⁵Nの三重標識試料とアミノ酸選 択標識試料を用いて、各種三重共鳴TROSYスペクトルを測定することにより、90%以上 の主鎖帰属を得ることができた。また、SAIL試料を用いたHCCH-TOCSY、CCH-TOCSY、 および各種三次元および四次元NOESYスペクトルを測定し、側鎖帰属およびNOEを元に した構造計算を現在進めている。さらに、NOEによる比較的近距離の情報に加え、遠 距離の構造情報としての残余双極子相互作用(RDC)や常磁性緩和(PRE)の情報なども 活用することで、より高精度なVRK1の立体構造の解明を目指している。今後はこれら の技術を他の高分子量タンパク質の立体構造解析に適用し、より高効率な解析方法を 検討することでハイスループットな解析技術を確立していきたいと考えている。

Figure 2. ¹H,¹⁵N TROSY-HSQC spectrum measured using Bruker 900 MHz spectrometer with cryoprobehead.

NDSB類が蛋白質のダイナミクスに及す効果

 ○若松馨¹, 王海梅¹, 松井文香¹, 神谷歩¹, 加藤瀬里¹, 行木信一¹, 菅瀬謙治²
¹群大・工
²サントリー生有研

Effects of non-detergent sulfobetaines on the dynamic structure of proteins

○Kaori Wakamatsu¹, Haimei Wang¹, Ayaka Matsui¹, Ayumi Kamiya¹, Seri Kato¹, Nobukazu Nameki¹, and Kenji Sugase²

¹Graduate School of Engineering, Gunma University, Gunma, Japan.

²Suntory Institute for Bioorganic Research, Osaka, Japan.

Aggregation of proteins is one of major bottlenecks in structure analyses of proteins by NMR and X-ray crystallography as well as in the production of biopharmaceuticals such as clinical monoclonal antibodies. Although several different classes of small chemicals that protect proteins from aggregation and denaturation are known, the stabilizing mechanisms have not been made clear for all compounds; the elucidation of the stabilization mechanisms would facilitate the design of better stabilizers. Non-detergent sulfobetaines (NDSBs), used as crystallization helpers, have been shown to stabilize many proteins under various conditions. We previously showed that NDSB-195, one of NDSBs, is useful also for NMR measurements of several proteins and that NDSB-195 does not affect static and fast (ns-µs) dynamic structures of acidic fibroblast growth factor. Because NDSBs were suggested to affect the slow (~ms) chemical exchange motions of several proteins, dynamic structures of KIX-87 were investigated by relaxation dispersion analysis. The effects of other stabilizers on NMR measurements were also analyzed.

蛋白質の凝集はNMRやX線結晶解析による蛋白質の立体構造解析の主要なボトルネ ックとなっているだけでなく、医療用モノクローナル抗体の生産などでも問題になっ ている.異なる種類の低分子化合物が蛋白質の凝集や変性を防止するが、安定化メカ ニズムが分かっていない化合物もあり、その解明はより効果的な安定化剤のデザイン に役立つと期待される.結晶化の補助剤として用いられてきたNon-detergent sulfobetaines (NDSB類) は色々な条件下で多くの蛋白質を安定化することが知られ ている.NDSB-195は蛋白質のNMR測定にも有用であること [1]、NDSB-195は酸性繊維 芽細胞増殖因子 (aFGF)の静的構造およびns~µsの速い運動に影響を殆ど与えないこ とを我々は示してきた.NDSB-195は数種の蛋白質の遅い化学交換反応に影響を与える ことが示唆されたので、本研究では化学交換が観測しやすいKIX-87蛋白質の動的構造 をrelaxation dispersion法で解析することにした [2,3].また、NDSB-195以外の安 定化剤もNMR測定で有用であるかを検討した.

NDSB, Dynamics, Stabilization

○わかまつかおり,わんはいめい,まついあやか,かみやあゆみ,かとうせり, なめきのぶかず,すがせけんじ 【結果】

1. KIXの運動性に及ぼすNDSBの効果:

NDSBの添加によるaFGFの¹⁵N⁻¹H HSQCシグナルの化学シフト変化は僅かであったのに 対し,KIX-87では殆どのシグナルが大きな化学シフト変化を示した(図1).また, 幾つかのシグナルは強度が変化し,その変化の程度は磁場依存的であった.そこで, NDSBの添加はKIXの遅い運動性に影響を与えていると予想される.現在,緩和解析を 行なっている.

図1. KIX-87の¹⁵N-¹H HSQCスペクトル(一部). 実線:0.5 M NDSB存在下, 破線:NDSB非存在下(実線に比べて等高線の間隔は2倍).

2. NDSB-195以外の安定化剤のNMRへの応用の可能性:

蛋白質の安定化剤としては、グリセロール、トレハロース、アルギニン [4]、アル ギニン+グルタミン酸混合物 [5] なども知られている.これらの安定化剤が蛋白質 の高温におけるNMR測定で利用できるかをGai1で解析した.グリセロールはNDSB-195 と同様に高温におけるシグナルの減少速度を低下させたが(半減期が延びた)、初期 強度を低下させた.また、アルギニンやアルギニン+グルタミン酸混合物はシグナル の減少を促進した.蛋白質の高温でのNMR測定に役立つ化合物は現在のところ、NDSB 類のみである.

【参考文献】

- 1. L. Xiang, et al., J. Magn. Reson. 194, 147-151 (2008).
- 2. M. Tollinger, et al., Biochemistry 45, 8885-8893 (2006).
- 3. K. Sugase, et al., Nature 447, 1021–1025 (2007).
- 4. K. Tsumoto, et al., Biotechnol. Prog. 20, 1301-1308 (2004).
- 5. A. P. Golovanov, et al., J. Am. Chem. Soc. 126, 8933-8939 (2004).

時間領域データの共有再構成を用いた T₂計測による 定量的ヒト脳内 2D CT-PRESS 法 〇渡邉英宏,高屋展宏,三森文行 独立行政法人 国立環境研究所

Quantitative 2D Constant Time PRESS in human brain by T₂ correction using 2D FT of shared time domain data

○Hidehiro Watanabe, Nobuhiro Takaya, Fumiyuki Mitsumori National Institute for Environmental Studies

A fast T_2 correction and quantitation method on CT-PRESS spectra using 2D FT of shared time domain (TD) data is proposed. Spectra with varied T_{ct} were generated by reconstruction of several partial TD data having shared area with other partial TD data. Then, T_2 was calculated by curve-fitting of peak volumes on these spectra. T_2 of Cr singlets by this method was in good agreement with T_2 by conventional method using 1D spectra. After coil-loading factors were considered by the internal water reference method in quantitation protocol, concentration of glutamate in human brain was calculated as 8.0 mM which is in good agreement with reported values.

1. はじめに

励起パルスからデータ収集開始までを一定時間長(T_{ct})として2次元データを収集する Constant Time (CT)法では、 F_1 方向の $J_{\rm HI}$ デカップリングによる良好なピーク分解が可能である。これまでに我々は、4.7Tヒト用 MR 装置上で局所励起 CT-COSY 法を開発し、ヒト脳内の主要な神経伝達物質であるグルタミン酸(Glu)、 γ -アミノ酪酸(GABA)のピーク検出(1)および濃度定量化を報告してきた。この定量化法では、 T_2 による信号減衰の補正、所謂 T_2 補正が必要であり、異なる T_{ct} 条件で取得した複数のスペクトルに対して $J_{\rm HI}$ を考慮したスペクトル解析を行うが、少なくとも2つのスペクトルを取得する必要があるため、80分の測定時間が必要であった。このため、高感度化すべくスピンエコー型の CT 法へと発展させ、CT-PRESS 法にても上記ピークの検出が可能であることを報告した(2)。今回、時間領域(TD)データの共有再構成法を用いることで高速化を達成する定量 CT-PRESS 法を提案し、ファントム実験およびヒト脳内グルタミン酸濃度定量を行ったので報告する。

2. 方法

定量化法で用いる CT-PRESS パルスシーケンスは、水信号抑圧パルス、領域外飽和 パルスに続き、局所励起モジュールである ISIS 局所励起モジュール(x方向) -90° スライスパルス(y方向) -1/2*TE1-180°パルス-1/2*(TE1+TE2) - $\Delta t_1/2$ -180° スライスパルス(z方向) - {データ収集}で構成される。 t_1 ステップ毎に $\Delta t_1/2$ シ フトした時刻に第2番目の 180°パルスを印加し、得られたエコー信号を収集する。

ヒト脳、定量化、CT-PRESS

○わたなべひでひろ,たかやのぶひろ,みつもりふみゆき

 N_1 回の全 t_1 ステップ終了後、得られた $N_1 \times n_2$ の全領域の2D TDデータに対して constant time条件を満たす様に、1 ライン毎のFIDデータの前段に0補填を行う。続いて、Fig. 1 に示す様に、得られた $N_1 \times n_2$ の全領域 TD データから、まず $n_1 \times n_2$ の部分 TD データ領 域 TD1 を切り出して再構成し、スペクトルを取得する。続いて、部分領域 TD1 とは異 なるが、一部を共有する $n_1 \times n_2$ の部分領域 TD2 の再構成により、スペクトルを取得す る。 t_1 方向のそれぞれの FID データは異なる TE を持っているので、TD1、TD2 からそ れぞれ T_{CT_2} で T_2 の重みの掛かったスペクトルが得られる。従って、1 回の測定 で取得した全データ領域から複数のスペクトルを得ることができ、これらのスペクト ル解析の結果、各代謝物ピークの T_2 補正が可能となり定量化ができる。

この提案方法を PC 上の MATLAB で開発した。模擬試料実験およびボランティア測定 は、全身用 4.7 Tesla MRI 装置 *INOVA* (Varian, USA)を用いて行った。まず、本方法 での T_2 測定実証のため、10 mM NAA、8 mM Cr、9 mM Glu、2 mM GABA、3 mM Gln を含 む脳模擬試料実験を行い、提案法により T_2 を求めた。次に、singlet である Cr ピー クの T_2 を異なる TE の 1D スペクトル列から求め、提案法による結果と比較した。ボラ ンティア測定では、頭頂・後頭葉領域内の 30×30×30 mm³のボクセルから CT-PRESS 信号を測定時間 24 分で取得し、グルタミン酸の濃度定量化を行った。

3. 結果

ファントム実験の結果、Cr ピークの T_2 は従来法で 574 ms、提案法で 582 ms であり、 提案法により T_2 が求められることが実証できた。ヒト脳内のグルタミン酸は、8 mM と求められ、既報告値と同等であった。

Fig. 2. Comparison between proposed T_2 measurement method on CT-PRESS spectra and the conventional method on 1D spectra. T_2 of Cr peak was calculated.

4. 結語

定量的 2D CT-PRESS 法は、30 分程度の測定時間でヒト脳内のグルタミン酸の濃度定 量が可能であり、この方法を用いて、GABA などの J_mカップリングを有する代謝物の 定量化が期待できる。

References

Watanebe, H., Takaya, N., Mitsumori, *MR Biomed.*, 21(5), 518-526, 2008.
渡邉英宏・高屋展宏・三森文行, 2D CT-PRESS によるヒト脳内高感度・高分解 *in vivo* ¹H スペクトロスコピー, 第 47 回 NMR 討論会講演要旨集, pp. 360-361

第二日目 11月11日(水) 英語セッション

Day 2 (Nov. 11, Wed.) (English Session)

高圧力 NMR 法によるライム病のワクチン候補蛋白質

0spA の立体構造揺らぎ

○北原亮¹²、Alana Simorellis³、横山茂之²⁴⁵、小出昌平⁶、赤坂 ー之²⁷

¹立命館大・薬、²理研播磨、³ユタ大・化学、⁴理研・生命分子システム、⁵東大院理、 ⁶シカゴ大・生化学分子生物、⁷近畿大・高圧力蛋白質研究センター

Intermediate conformer of the Lyme disease vaccine candidate OspA probed with variable pressure NMR spectroscopy

Ryo Kitahara¹², Alana Simorellis³, Shigeyuki Yokoyama²⁴⁵, Shohei Koide⁶, Kazuyuki Akasaka²⁷

¹Pharm, Sci. Ritsumeikan Univ., ²RIKEN-Harima, ³Dep.Chemi.Univ. Utah, ⁴RIKEN SSBC, ⁵Univ. Tokyo, ⁶Dep.Bichem. & Mol. Biol. Univ. Chicago, ⁷High Pressure Protein Research Center Kinki Univ.

Outer surface protein A (OspA) from *Borrelia burgdorferi* consists of a unique single-layer β -sheet structure sandwitched by two globular domains and is involved in the transmission of Lyme disease from the host tick to the uninfected mammal. To find a link of its unique conformation to the mechanism of infection, here we study the stability and the conformational fluctuations of OspA using ¹⁵N/¹H two-dimensional NMR spectroscopy under pressure perturbation. We found that the unique folded structure (N) fluctuates with a hinge-like motion (τ <<ms) in the middle of the non-globular single-layer β -sheet. In addition, the folded structure undergoes a major conformational transition (τ >ms) with a large volume decrease (-140 ml/mol) to a single, peculiar intermediate (I), in which about two thirds of the polypeptide chain in the C-terminal side is unstructured with the rest of the molecule largely intact. The uniqueness of the conformation and its relatively low free energy (32 kJ/mol above N) suggests that conformer I be identified with the putative high-energy conformer involved in the bacterial infection.

[序論] 高圧力NMR法は、約 3500 気圧までの高圧力下で溶液NMR測定を可能に する手法であり、これまでに 20 以上の球状蛋白質について測定が行われ、複数の蛋 白質について天然状態を逸脱した準安定状態の存在を明らかにした。この手法を、大 変ユニークな連続的βシート構造を持つ 31 kDa の蛋白質に適応した例を紹介する。

Key word: Pressure, Intermediate, Vaccine ○きたはらりょう、アラナ シモレリス、よこやましげゆき、こいでしょうへい、あ かさかかずゆき *Borrelia burgdorferi* 由来の Outer surface protein A (0spA, 31 kDa)は、ア メリカを中心に流行しているライム病の感 染に関わる蛋白質である。*Borrelia burgdorferi*は、ダニによる媒介によりヒ トを含む哺乳動物に感染する。細菌表面蛋 白質である 0spA は、そのN 末端に修飾され

た脂質を介して細菌の細胞膜に結合している。OspAのC末端ドメインはダニの腸管表 面の受容体を認識する機能を持ち、Borreliaがダニの腸管内で共棲するためにこの機 能が必須であると考えられている。また OspA は細菌感染の初期に働くためライム病 のワクチンとして利用されたが、副作用の問題が生じたため安全性の高いワクチンが 望まれている。

OspA は 21 本の逆平行の β ストランドを有し、C 末端に唯一の α ヘリックスを有す る。N 末端とC 末端は球状ドメインであり、それを繋ぐ中央には非球状の露出した β シート構造が存在する。OspA の構造安定性については、ライム病ワクチン候補として の観点で意味があり、これまでに小出らにより熱測定や様々な分光学的研究がなされ てきた。

[結果と考察] 0.1 MPa-250 MPa (313 K) までの範囲で 1D-¹H-NMR、2D-TROSY 測定 を行った。150MPa までの加圧とともに ¹H 及び ¹⁵N で明確な化学シフトの変化が観測さ れた。特に、N及びC末端球状ドメインを繋ぐ中央 β シート領域の一部(β 7- β 9)では、 平均を大きく逸脱するシフトが観測されたことから、ミリ秒より速い時間スケール (τ<<ms)でこのβシート領域をヒンジとした構造揺らぎが存在することが示唆された。 さらに 150 MPa-250 MPa では、加圧とともに一部のピークについて信号強度の減少と 変性状態由来の多数の信号が観測された。このことからN末端ドメイン(B1-B7)は その立体構造を保持するものの、中央βシートと受容体及び抗体結合部位を含むC末 端ドメイン(B8-B21)の構造は壊れることが分かった。また TROSY スペクトルの 中央部に分離した尖鋭な信号が複数生じていることから、転移の時間スケールはミリ 秒より十分遅い(t>ms)と考えられる。この結果は、0spA は天然構造と変性構造の他に、 中央βシート領域とC末端ドメインが変性した局所変性構造との化学平衡状態にある ことを意味する。圧力下で安定化された局所変性構造は、これまでに重水素交換 NMR 法により示唆された各ドメインの安定性と良い一致を示した。局所変性構造では、受 容体認識部位を含む150残基以上が変性しアームの如く伸びることにより広い範囲で の受容体認識を可能にしていると推測される。またN末端ドメインから独立した安定 性を示す中央βシート領域-C 末端ドメインは、抗体結合部位を含むフォールド可能 な領域であることから不活性化ワクチンとしての候補となりうる。

Structural Studies of Membrane Proteins Using NMR Experiments on Bicelles

Ayyalusamy Ramamoorthy

Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, USA

Recent studies have shown that NMR spectroscopy is becoming a powerful technique to determine the atomic-level resolution structure of membrane proteins. A number of successful NMR approaches and model membranes have been reported. We are developing solid-state NMR methods to study the structure, dynamics, and topology of several membrane proteins and peptides that are embedded in carefully chosen model membranes. High-resolution experimental results obtained from magnetically aligned bicelles containing uniformly labeled transmembrane proteins, cytochrome b5 with and without cytochrome P450, will be presented along with results from MAS experiments.¹⁻³ Advantages of using rotating-frame and laboratory-frame NMR techniques, and spectral editing techniques, will also be presented. New approaches to study the membrane interaction of unstable amyloidogenic peptides will also be presented.

Figure 1: Cartoon model of the fulllength form of Cyt-b5 Cyt-P450. and А cross-section of the soluble domains of Cyt-b5 (PDB code: 1CYO) in grey and Cyt-P450 (PDB code: 1PO5) in green is shown. The spacefilling model in red represents the heme groups. domain.

References

1) U. H. N. Dürr, K. Yamamoto, S.-C. Im, L. Waskell, and A. Ramamoorthy, *J. Am. Chem. Soc.*, 129, 6670 (2007).

2) U. H. N. Dürr, L. Waskell, and A. Ramamoorthy, *BBA Biomembranes* 1768, 3235-3259 (2007).

3) J. Xu, U. H. N. Dürr, S-C. Im, Z. Gan, L. Waskell, and A. Ramamoorthy, *Angew. Chem.*, 47, 7864-7867 (2008).

兵庫県立大学 大学院 物質理学研究科

Nuclear spin polarization of alkali-salts by optically-pumping atomic vapor Kiyoshi Ishikawa Graduate School of Material Science, University of Hyogo, Japan

石川 潔

We report on the nuclear spin-polarization of solid alkali-salts by an optical pumping of atomic vapor. Spin-polarized alkali-metal atoms transported angular momentum as the electron and nuclear spin-polarization to the solid surface, where spin polarization mostly decayed fast but was partly injected to solid, and angular momentum was accumulated in the nuclear-spin system by the help of large relaxation time. The enhancement of NMR signals was measured at various magnetic fields, temperatures, laser frequencies, pump polarizations, and N₂ buffer-gas pressures. Comparing with the numerical simulation of spin currents by alkali-metal vapor, we discuss which spin-current is responsible for the nuclear spin-polarization of salts and how the NMR enhancement depends on the above parameters.

固体のアルカリ塩の核スピン偏極について、気体原子の光ポンピングによる方法を報 告する。ガラス容器中で気体のアルカリ金属原子を光ポンピングすると、電子スピンと 核スピンが偏極され、その流れが壁に向かって発生する。それらスピン流が壁に達する と、ほとんどは無駄に緩和するが、角運動量の一部は壁などの固体にわたり、固体の核ス ピンを偏極する。固体中の核スピン緩和時間が長ければ、十分な角運動量が固体に蓄積 する。一部のアルカリ金属は電気四重極モーメントが非常に小さく、緩和時間は室温で 数分から数10時間にわたり、対称性のよいアルカリ塩は角運動量を蓄積する物質として 適している。磁場 9.4 T における結果を 2006 年の NMR 討論会で発表して以来 3 年間で、 試料作成の再現性を改善し、さまざまな実験条件においてスピン偏極増大を観測した。講 演では、レーザー光から、アルカリ金属原子を介し、固体にまで角運動量が移る機構を解 説しながら、この新しい核スピン偏極法の特徴を紹介する。

実験では、試料として水素化セシウム (CsH, CsD) を使い、Csイオンの NMR 信号を 観測した。 アルカリ塩の微結晶を側壁内面に生成させた円筒形ガラス容器を磁場中に設 置し、Cs 原子を光ポンピングする。 光ポンピングと信号検出は、同じ大きさの磁場で行 なう。 試料は固体であるが、興味あるのは核スピン偏極率なので、RF 単パルスにより誘 起した FID 信号により偏極率を評価した。 実験装置の配置は、希ガス原子のスピン交換

Hyperpolarization, Alkali salt, Optical pumping いしかわ きよし

光ポンピングと類似しており、スピン偏極移行のためにはマイクロ波などは不要である。 磁場は、9.4 T (Cs 共鳴周波数: 52.4 MHz), 2.7 T (15.1 MHz), 0.56 T (3.17 MHz) の3段 階で切り替えた。 試料温度は 70 ~ 140 °C の範囲で変化させた。励起レーザーは出力約 1 W で、Cs 原子の D_1 線 (894 nm) または D_2 線 (852 nm) に共鳴させた。 D_1 線のみな らず D_2 線でも効率よい光ポンピングが可能なのは、原子のゼーマン分裂が、基底状態の 超微細分裂より大きいからである。 このような条件で、約 10¹⁶ $\hbar/cm^2 \cdot s @$ 100 °C のス ピン流が固体表面に流れ込むと期待できる。 熱平衡状態の核スピン偏極を正確に評価す ることは難しいが、少なくとも 80 程度の偏極率の増大が得られた。

さて、この研究の特徴は、固体のスピン偏極のため気体原子を使うことである。 希ガ スのスピン交換光ポンピングでは、個々の希ガス原子が、スピン源となるアルカリ金属原 子と衝突し、電子スピンから核スピンに偏極移行を実現させていた。 それに対し、表面 でしか相互作用の機会がない気体から固体に、スピン偏極が有意に移るのは驚きである。 光から固体までのスピン偏極移行の過程を順に追っていくと、最初のステップは、レー ザー光で誘起する気体のスピン流である。以下では、緩衝ガス圧により現象を分類する。 1 気圧程度の緩衝ガスが存在する場合、Cs 原子は緩衝ガスと衝突しながら壁に向かって 角運動量を運ぶ。角運動量を担っている原子自身が拡散で移動するので、スピン流も拡 散モードである。さらに緩衝ガスは、原子の並進運動だけでなく、光学遷移やスピンダイ ナミクスにも影響する。 たとえば、Cs 原子が緩衝ガスと衝突すると、電子スピン偏極が 核スピンに移る — 超微細シフトポンピング、つまり、気体の電子スピン流と核スピン流 は互いに結合する。緩衝ガスが 10⁻² 気圧程度では、超微細シフトポンピングは無視でき る。 一方、緩衝ガスは拡散の速さを決め、光学遷移を消光させる。 特に後者は、スピン 偏極の符号に関わる点で重要である。最後に、緩衝ガスがない真空容器の場合、光ポンピ ングされた Cs 原子は、弾道運動ののち壁に衝突する。 したがって、上で述べた複雑な過 程はほとんど存在せず、独立な原子の光ポンピングのみがスピンの流れを決めることにな る。実験では、緩衝ガスの有無によりスピン流の符号が反転し、したがって、スピン注 入による固体の NMR 信号も符号を変えた。

スピン偏極移行の第2段階は固体表面におけるスピン相互作用であり、第3段階は固体内のスピン拡散である。気体のスピン流に比べ、こちらには未解決の課題が多い。表面と固体内部について、自由かつ容易に制御できるパラメータが少ないからである。アルカリ塩の核スピン偏極を、アルカリイオンのNMR感度向上など応用につなげるためには、これら3つのステージのそれぞれで高効率なスピン偏極移行を実現する必要がある。 今後、多くのアルカリ塩で最適な条件を見つけることを目標に、特に、固体表面と内部に注目し、基礎実験を行なう。

Allosteric Effects on Ubiquitin Ligase Activity by a Novel E2 Binding Region: Integration of NMR, Crystallography, and Molecular Biology

Ranabir Das¹, Jennifer Mariano², Yien Che Tsai², Ravi Kalathur³, Jess Li¹, Robert McFeeters¹, Amanda Altieri¹, Xinhua Ji³, Allan M. Weissman², **R. Andrew Byrd**¹. ¹Structural Biohpysics Laboratory; ²Laboratory of Protein Dynamics and Signaling; and ³Macromolecular Crystallography Laboratory, CCR, NCI, Frederick, MD, USA.21702-1201

The ubiquitin ligase gp78 is an important regulator of endoplasmic reticulum-associated degradation (ERAD) and has been linked to metastasis in sarcomas. gp78 is a polytopic RING finger E3 that functions in cells with the ERAD E2, Ube2g2, and is characterized by an intriguingly complex domain structure for a single subunit E3. In addition to its RING finger, the extended cytoplasmic C terminal tail of gp78 includes a ubiquitin-binding CUE domain. Our examination of both of these domains by NMR spectroscopy reveals structures similar to previously described members of these families. A unique feature

of gp78 is a discrete Ube2g2 binding region (G2BR) located near the C terminus of the protein that binds Ube2g2 with high specificity and affinity and that is required for the function of gp78 in cells. Our studies reveal a complex physical and functional interaction between the G2BR and Ube2g2. The G2BR not only has the capacity to bind Ube2g2 but to also stimulate ubiquitination by Ube2g2 and a truncated gp78 lacking endogenous G2BR when the G2BR is provided 'in trans'. We have characterized the biophysics of the G2BR:E2 interaction via calorimetry and determined the binding site via NMR and x-ray crystallography. The G2BR is unfolded in solution and adopts an alpha-helical topology and an extensive interaction interface when bound to Ube2g2. The interaction surface is identical in solution (by intermolecular NOESY data) and the crystal structure. Our structural and binding studies reveal G2BR-induced alterations in Ube2g2 interactions with the gp78 RING that suggest a mechanistic explanation for the enhanced activity observed with the G2BR. Further, we have determined that increased activity can also be observed specifically with Ube2g2 when other RING finger domains are employed in ubiquitination reactions. These findings provide new mechanistic insights into E2-RING finger function and suggest that binding of E2s by discrete domains, independent of their E1 and RING finger interaction sites, may provide a general mechanism for regulating their function. This suggests a previously unappreciated mechanism by which ubiquitylation can be regulated. It is possible that other pairs of E2s and E3s interact through domains, which have yet to be characterized, that are similar to the gp78 G2BR and its corresponding binding site on its E2. This introduces the possibility of entirely new therapeutic avenues in cancer and other diseases. Current work is exploring the design of modulators of these interactions.

 2L5
In-Cell NMRによるヒト細胞内におけるタンパク質の分子 間相互作用・安定性の解析
○猪股晃介^{1,2}, 真板(大野)綾子^{2,8}, 杤尾豪人^{1,2}, 磯貝信¹, 天野剛志^{2,3}, 中瀬生彦⁴, 武内敏秀⁴, 二木史朗^{4,5}, 伊藤隆^{2,6}, 廣明秀一^{2,3}, 白川昌宏
^{1,2,7}
¹京都大党工党研究科, ²CPEST/IST, ³袖戸大党医党研究科, ⁴京都大

¹京都大学工学研究科,²CREST/JST,³神戸大学医学研究科,⁴京都大 学化学研究所,⁵SORST/JST,⁶首都大学東京,⁷理研横浜研究所,⁸徳 島大学大学院ヘルスバイオサイエンス研究部

In-Cell NMR studies for intermolecular interactions and folding stability of proteins inside human cells

○Kohsuke Inomata^{1,2}, Ayako Ohno^{2,8}, Hidehito Tochio^{1,2}, Shin Isogai¹, Takeshi Tenno^{2,3}, Ikuhiko Nakase⁴, Toshihide Takeuchi⁴, Shiroh Futaki^{4,5}, Yutaka Ito^{2,6}, Hidekazu Hiroaki^{2,3}, Masahiro Shirakawa^{1,2,7}

¹ Department of Molecular Engineering, Graduate School of Engineering, Kyoto University ² CREST, JST

³ Division of Structural Biology, Graduate School of Medicine, Kobe University

⁴ Institute for Chemical Research, Kyoto University

⁵ SORST, JST

⁶ Department of Chemistry, Tokyo Metropolitan University

⁷ RIKEN, Yokohama Institute

⁸ Institute of Health Biosciences, The University of Tokushima

In-cell NMR is an isotope-aided multi-dimensional NMR technique that enables observations of conformations and functions of proteins in living cells. However, application of in-cell NMR has been limited to *E. coli* or *Xenopus laevis* oocytes. For wider application, we have established a method to obtain high-resolution multi-dimensional heteronuclear NMR spectra of proteins inside living human cells. In this presentation, we will demonstrate two applications of our in-"human cell" NMR. First, we detected intermolecular interaction of ubiquitin with endogenous binding partners. Intriguingly, the interaction was observed exclusively inside cells, but not in cell lysates. Second, we evaluated the folding stability of ubiquitin inside living cells by performing a hydrogen exchange experiment coupled with in-cell NMR spectroscopy.

"In-cell NMR"は細胞内の蛋白質を異種核多次元NMR測定により選択的に観測し、生きた細胞内での蛋白質の構造・動的挙動を原子レベルで解析することを目的とする。しかしながら、従来のin-cell NMRは大腸菌やアフリカツメガエルの卵母細胞に限定されていた。

In-Cell NMR, Hetero-nuclear Multi-dimensional NMR, Mammalian cells

Oいのまた こうすけ, おおの あやこ, とちお ひでひと, いそがい しん, てんの たけし, なかせ いくひこ, たけうち としひで, ふたき しろう, いとう ゆたか, ひろあき ひでかず, しらかわ まさひろ 我々は、HIV-1ウイルスのTat1蛋白質由来のCell Penetrating Peptide(CPP)を利用して、高 効率に安定同位体標識された蛋白質を細胞質に導入することで、世界に先駆けてヒト等高 等哺乳動物の細胞におけるin-cell NMR測定に成功した。またその過程で、pyrenebutyrate による細胞処理、細胞質におけるCPPの切断が、目的蛋白質の細胞質・核質への均一な導 入に必須であることを見出している。本発表では、上記手法を用いて行った2つの応用実験 について示す。

(1) ヒト細胞内に導入された蛋白質(ユビキチン:Ub)と細胞内在性の蛋白質との特異的な 分子間相互作用の検出を行った(Fig. 1)。ユビキチンの野生型と変異体のin-cell NMRスペ クトルを比較すると、特定の残基のピーク強度が変異体のそれに比べて著しく減少しており、 細胞内在性蛋白質との特異的相互作用が示唆された。興味深いことに、野生型ユビキチン を導入した細胞の破砕液の上清を測定したところ、先のようなシグナル強度の減少は見られ なかった。これらのことから、上記シグナル強度の減少を引き起こした相互作用は生きた細 胞内でのみ現れる何らかの状態・構造と深く関連があると推測される。

Figure 1

In-cell NMR spectra of (a) wild-type ubiquitin and (b) L8A, I44A, V70A ubiquitin derivative.

(2) 細胞内での重水素/軽水素交換実験によって細胞内におけるUb(及びその変異体) の主鎖アミド水素の交換速度を測定し、*in vitro*のそれと比較した(Fig. 2)。得られる水素交換 の速度は蛋白質のフォールディング安定性と関連付けることができる。蛋白質は、

macromolecular crowding 効果や排除体積効果等の理論的考察とin vitroモデル実験の結果から、一般に細胞内の方が安定化する傾向にあると考えられていた。しかし、我々の実験結果はこの通説とは逆であった。すなわち、in vitroに比べて細胞内では水素交換の速度が一桁程度促進されており、細胞内ではin vitroよりUbのフォールディングが不安定になることが示唆された。これまで生きた細胞内で蛋白質のフォールディング安定性を定量的に評価する手法はなかった。今回見られたUbの不安定化は、本法により初めて得られた知見である。

Figure 2 Hydrogen exchange experiment of ubiquitin in cells(a) Build-up of cross-peaks of protected amides in the spectra of ubiquitin recovered in lysates collected at various times after protein transductions.

(b) The hydrogen exchange rates (k_{ex}) in cells (black) and *in vitro* (gray)

From Structural Chemistry to Structural Biology Fuyuhiko Inagaki Graduate School of Pharmaceutical Sciences, Hokkaido University N12, W6, Kita-ku, Sapporo 060-0812, Japan

In 1972, I joined the laboratory of Prof. Tatsuo Miyazawa at the Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, as a PhD student and started a structural study of biomolecules using NMR. I was interested in the structural information involved in the pseudo-contact shift induced by paramagnetic lanthanide ions, and I was able to determine the structure and conformational equilibrium of mononucleotides. In 1976, a Bruker WH270 was installed in Prof. Miyazawa's laboratory and I concentrated on the structural and functional studies of neurotoxins from snake venoms and the enzymatic mechanism of RNase T₁ using NMR. As a Japanese Ramsay Fellow, I stayed at Oxford from 1979 to 1981, working with Prof. R. J. P. Williams, and here I continued the neurotoxin work especially working on the dynamic aspects. After I came back from Oxford, I joined the Toray Research Center and started the application of 2D NMR to the structural determination of natural products. In 1986, I moved to the Tokyo Metropolitan Institute of Medical Sciences as a section chief of Molecular Physiology, where I determined the chemical structures of glycolipids using two dimensional NMR. I proposed a non-empirical method using both TOCSY and NOESY to determine the sequence of sugar chains. Together with the glycolipid work, I started to determine the structure of EGF using 2D NMR, where the work of three groups including us reported essentially the same EGF structure. This showed the value of NMR as a objective method to determine protein structures. After the EGF work was completed, I started an HFSP project in collaboration with Dr. J. Schlessinger and Dr. A. Ullrich in 1990 which led me into the structural biology of signal transduction. The NMR structures of SH3 domains and complexes with their target peptides revealed their roles in the signal transduction. In 1998, I organized a research group of "Protein-protein interaction in intracellular signal transduction" supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Japan Ministry of Education, Science and Culture. I stressed the communication among researchers from different fields including structural biology, molecular biology, and cellular biology. In 1999, I moved to the Graduate School of Pharmaceutical Sciences, Hokkaido University as a professor of Structural Biology and started X-ray crystallography as well as I continued NMR. This expanded my research field, and I studied protein structures to reveal whole biological systems. I studied the structural biology of NADPH oxidase in neutrophil in collaboration with Prof. H. Sumimoto of Kyushu University, the structural biology of innate immunity related to the IRF-3 production system with Prof T. Fujita of Kyoto University, and the structural biology of autophagy with Prof Y. Ohsumi of the National Institute of Basic Biology. I enjoyed

fruitful results in these subjects and benefitted from the human relations we established.

I have spent my time doing research from the beginnings of and all the way to the maturation of structural biology. I have been enjoying science challenges with my students and collaborators and I am proud that many young scientists were brought up in my laboratory: Prof. D. Kohda (Kyushu Univ.), Prof. Ichio Shimada (Tokyo Univ.), Prof. H. Terasawa (Kumamoto Univ.), Prof. S. Tate (Hiroshima Univ.), Prof. J. M. Lancelin (Lyon Univ.), Dr. H. Hatanaka (Tokyo Univ.), Dr. S. Ichikawa (Japan Women's Univ.), Dr. K. Nagata (Tokyo Univ.), Dr. K. Ogura (Hokkaido Univ.), Dr. S. Yuzawa (Kyushu Univ.) and Dr. N. Noda (Hokkaido Univ.) are among these, along with other young students.

<u>Inagaki F</u>, Miyazawa T. NMR Analyses of Molecular Conformations and Conformational Equilibria with Lanthanide Probe Method. *Prog Nuclear Magn Reson Spectrosc.*, 14, 67-111 (**1981**)

<u>Inagaki F</u>, Shimada I, Miyazawa T. Binding modes of inhibitors to ribonuclease T1 as studied by nuclear magnetic resonance. *Biochemistry.*, 24, 1013-1020 (**1985**)

Kohda D, Go N, Hayashi K, <u>Inagaki F.</u> Tertiary structure of mouse epidermal growth factor determined by two-dimensional 1H NMR. *J Biochem (Tokyo)*, 103, 741-743 (**1988**)

Kohda D, Hatanaka H, Odaka M, Mandiyan V, Ullrich A, Schlessinger J, <u>Inagaki F.</u> Solution structure of the SH3 domain of phospholipase C-gamma. *Cell.*, 72, 953-960 (**1993**)

Terasawa H, Kohda D, Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishii S, Mandiyan V, Ullrich A, Schlessinger J, <u>Inagaki F.</u> Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. *Nat Struct Biol.*, 1, 891-897 (**1994**)

Ichikawa S, Hatanaka H, Takeuchi Y, Ohno S, <u>Inagaki F.</u> Solution structure of cysteine-rich domain of protein kinase C alpha. *J Biochem (Tokyo)*, 117, 566-574 (**1995**)

Hatanaka H, Ogura K, Moriyama K, Ichikawa S, Yahara I, <u>Inagaki F.</u> Tertiary structure of destrin and structural similarity between two actin-regulating protein families. *Cell.*, 85, 1047-1055 (**1996**)

Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. *J Mol Biol.*, 306, 527-537 (**2001**)

Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, <u>Inagaki F.</u> X-ray crystal structure of IRF-3 and its functional implications. *Nat Struct Biol.*, 10, 922-927 (**2003**)

Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, <u>Inagaki F.</u> NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. *J Biol Chem.*, 281, 3660-3668 (**2006**)

Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, <u>Inagaki F.</u> Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. *Nat Struct Mol Biol.*, 14, 503-510 (**2007**)

Noda, N.N., Ohsumi, Y., <u>Inagaki, F.</u> Atg systems from the protein structural point of view *Chem. Rev.*, 109, 1587-1598 (**2009**)

"The choreography of an enzyme's dance"

Dorothee Kern

Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, 02454

The synergy between structure and dynamics is essential to the function of biological macromolecules. While this is a widely accepted concept, key questions remain: Have proteins evolved so that substates necessary for activity are preferable accessible? How do motions on different timescales relate to each other and contribute to biological function? How can a protein interconvert among folded substates but avoid unfolding at the same time? What are the molecular pathways for conformational transitions? How does the energy landscape relate to protein function?

The talk will address these questions. We will quantitatively characterize the energy landscape of a signaling protein and reveal how its features explain allosteric activation. New insights into the transition state of the conformational switch are presented. Second, the energy landscape of an enzyme both during catalysis and in the absence of substrates is being characterized, which allows identification of dynamics that are linked to enzyme catalysis.

Both examples illustrate that motions in folded proteins are not random but preferentially follow the pathways, which create the configuration capable of proficient function. This situation is analogous to protein folding, which is biased so as to sample only a small portion of the energy landscape. The expansion of the concept of non-random sampling of conformational space for efficient biological function from folding to conformational rearrangements within the folded space combines both phenomena through the energy landscape. The timescale and amplitude of motion were characterized by a combination of NMR relaxation, x-ray, single molecule FRET experiments and molecular dynamics simulations. Finally, the hierarchy in space and time for proteins is discussed. The linkage between three different "tiers" of dynamic timescales: (i) Thermally driven, fast (ps), local atomic fluctuations, (ii) faster (ns) motions of whole segments and (iii) larger amplitude, collective, slower motions (µs-ms), the time-scale of catalysis is characterized.

2L7

分子配向依存的なTROSYシフト変化によるタンパク質分 子構造変化解析 ○楯 真一^{1,2} ¹広島大・理・数理分子, ²PRESTO/JST

Ligand-induced protein structural change revealed by orientation induced TROSY shift changes

Shin-ichi Tate^{1,2}

¹Department of Mathematical and Life sciences, School of Science, Hiroshima University, Higashi-Hiroshima, Japan ² PRESTO/JST

We have been working on the development of a new NMR approach, DIORITE (Determination of the Induced ORIentation by Trosy Experiments), for determining the relative domain orientation in large-molecular weight proteins, to which the conventional approach using the residual dipolar couplings (RDCs) cannot be readily applied. In this presentation, we will report our recent application of DIORITE to a various types of proteins. Another advantageous feature of DIORITE will also be described for the determination of the domain orientation of an anisotropically tumbling protein, which also hinders the RDC-based domain orientation analyses.

The use of anisotropic spin interactions that are observed for weakly aligned proteins has generated a various types of novel NMR application to protein structure analyses. We have previously reported the ¹⁵N TROSY shift change induced by weak alignment of protein can be explained by the combinatorial contributions from the residual dipolar coupling (RDC) and the residual chemical shift anisotropy (RCSA) associating with the amide ¹⁵N nuclei (1,2). The alignment-induced TROSY shift change found for each signal can be related to the corresponding peptide plane orientation against the magnetic field. The alignment-induced TROSY shift changes, thus, can provide the alignment tensor parameters consistent with those derived from the RDCs. In contrast to the RDCs, the use of the alignment-induced TROSY shift changes is spurious in its sensitivity for the large molecular weight proteins; the higher-field component in IPAP-HSQC spectrum is hard to observe for the proteins greater than 30 kDa. This TROSY-based approach for obtaining the alignment tensor gives a robust way to determine the domain orientation in the high molecular weight protein, to which the conventional RDC-based experiments is hindered in application.

Keywords: 異方性スピン相互作用,蛋白質構造,分子配向

たて しんいち

The TROSY-based alignment tensor analysis is called as DIORITE (2). For elucidating the performance of the DIORITE, we applied it to maltose binding protein (MBP) in the complexes with various ligands including α -, β -, and γ -cyclodextrins and also maltose. The X-ray structure of MBP in the maltose bound form altered the domain orientation from

apo-form; the domain rotation was described by the hinge-rotation angle of 32.5 degrees. We applied the DIORITE to see if the DIORITE analysis can reproduce the domain rotation found in the crystal structure. The overlay of the TROSY spectra for MBP in the maltose bound form observed in the isotropic and anisotropic conditions is shown in Fig. 1, which shows significant shift changes induced by the alignment. Using the observed TROSY shift changes and the MBP crystal structure in its apo-form, the domain orientation was determined to have the hinge rotation angle of 32.9 degrees (Fig. 2). The angle was consistent

Fig. 1: Orientation-induced TROSY shift changes for MBP in the complex with maltose.

with the X-ray results, which confirms that DIORITE analysis can give the right domain orientation; even though we neglect the intrinsic variations in ¹⁵N CSA tensors.

We additionally analyzed the domain orientations in MBP according to the ligand sizes. MBP binds to α -, β - and γ - cyclodextrins with similar affinities. The number of linked glucoses are different in the ligands; six, seven and eight glucose resides in α -, β -, and γ -cyclodextrin, respectively. The DIORITE analyses were applied to the MBP in each ligand.

The analyses have shown the domain orientation were changes according to the ligand sizes. The hinge rotation angles induced by the binding to α -, β -, and γ -cyclodextrins were analyzed to give 22.4 degs., 13.3 degs. and 13.9 degs. The MBP in the α -cyclodextrin has shown the closer domain arrangement compared to the complex with the others. MBP was shown to have ability to adopt its domain orientation to appropriately grasp ligand.

In the presentation, we will also describe the other DIORITE application to the protein showing a highly anisotropic rotational diffusion, to which the RDCs-based domain orientation analyses are not readily applied.

Fig. 2: Domain orientation of MBP in the complex with maltose determined by DIORITE.

References

- 1. Tate, S. et al., J.Magn.Reson. 171, 284-292 (2004).
- 2. Tate, S. Anal. Sci. 24, 39-49 (2008).

NMR investigation of the iron-ligated histidines of the Rieske protein from *Thermus thermophilus* supports a coupled proton and electron transfer mechanism

Kuang-Lung Hsueh,^a William M. Westler,^b and <u>John L. Markley</u>^{a,b}

^aGraduate Program in Biophysics, ^bNational Magnetic Resonance Facility at Madison, Biochemistry Department, 433 Babcock Drive, University of Wisconsin, Madison, Wisconsin 53706, USA markley@nmrfam.wisc.edu

Our recent NMR investigations of iron-sulfur proteins have centered on the properties of the imidazoles of the two histidines (assigned ambiguously to His134 and His 154) that ligate the iron-sulfur cluster of the Thermus thermophilus Rieske protein (TtRp) in its oxidized state (1). We previously used directly-observed ¹⁵N NMR spectroscopy to measure the pK_a values of The sequence-specific assignment of these pK_a values is of critical interest, because of its pertinence to the mechanism of electron and proton transfer in the bifurcated Q-cycle. The extreme paramagnetism of the [2Fe-2S] complex prevented the assignment of these signals by conventional methods. Because the protein sequence of TtRp contains a single His-Leu sequence (H134-L135), the unique ${}^{13}C'{}^{-15}N$ connectivity detected from a sample of the protein labeled with $[^{15}N]$ -Leu and $[U^{-13}C, U^{-13}C]$ ¹⁵N]-His could be used to identify the ${}^{13}C'$ of His134 and, by difference, the ${}^{13}C'$ of His154. Through-bond NMR correlations enabled these assignments to be extended to the ${}^{13}C^{\alpha}$ atoms of the two cluster ligated histidine residues. Correlation of the fitted pK_a values of the sequence-specifically assigned histidine ${}^{13}C'$ and ${}^{13}C^{\alpha}$ signals with those from the ¹⁵N^{ε 2} signals, led to unambiguous assignment of the pK_a values of oxidized *Tt*Rp: His134 $pK_a = 9.1$ and His154 $pK_a = 7.4$. These unambiguous assignments, which are the reverse of the prior tentative assignments (1), are consistent with a mechanism involving concerted transfer of an electron and a proton at the His154 site (see figure below). We currently are attempting to determine the pK_a values of His134 and His154 in the reduced form of the protein. Preliminary NMR results, confirm the expectation that both of these pK_a values are >> 10.5.

Supported by NIH grant GM58667. NMR data were collected at the National Magnetic Resonance Facility at Madison, with support from the NIH National Center for Research Resources (P41 RR02301).

1. Lin, I. J.; Chen, Y.; Fee, J. A.; Song, J.; Westler, W. M.; Markley, J. L. J. Am. Chem. Soc. 2006, 128, 10672-3.

Sensitivity and Structures in Solid-State NMR: Challenges in Characterization of Amyloid Misfolding and Graphite-based Nano-materials

Yoshitaka Ishii

Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor M/C111, Chicago, Illinois 60607, USA

Four separate topics on recent progress of solid-state NMR (SSNMR) in our laboratory are presented. First, we discuss a novel approach to enhance sensitivity and to elucidate structural information with paramagnetic relaxation enhancement for amyloid fibrils and other biomolecules in SSNMR. In ¹³C SSNMR, 95-99 % of the experimental time is typically consumed for long recycle delay (1-4 s) between signal acquisitions, which has been considered to be essential in order to recover ¹H magnetization via T_1 relaxation as well as to prevent degradation of samples or NMR probes by RF irradiation. Interestingly, very little effort has been made to reduce the recycle delays that dominate experimental time over the past 30 years. We present that paramagnetic doping and fast magic angle spinning drastically reduces experimental time by a factor of 5-20 in multidimensional protein SSNMR^{1,2} without any major problems, while providing additional structural information. We discuss the detection limit of multi-dimensional SSNMR in this approach for ¹³C- and ¹⁵Nlabeled ubiquitin. Applications are demonstrated for Alzheimer's β (A β) fibrils and other proteins. Second, we present SSNMR studies of Cu(II)-bound A β fibrils, which are suspected to produce oxidative species such as H_2O_2 toxic to neurons, via a catalysis-like mechanism. ¹³C SSNMR analysis provides molecular-level basis on the potential binding site(s) of Cu(II) to insoluble A β (1-40) fibrils and the stoichiometry of Cu(II) binding to Aβ. The extent of the structural changes upon Cu(II) binding is also examined. Third, we discuss SSNMR studies of site-resolved structural characterization of neuro-toxic amyloid intermediates for 40-residue Alzheimer's β amyloid, A β (1-40). In our approach, we combine detection of morphology changes by electron microscopy (EM) and structural examination for freeze-trapped intermediates by SSNMR.^{3,4} We demonstrate that a neurotoxic β -sheet intermediate (I_{β}) of 20-40 nm diameter exists prior to fibrillization by EM for the wildtype $A\beta(1-40)$ and a pathogenic mutant of $A\beta$, E22G. It is shown that the SSNMR approach reveals the sequence-specific secondary and supramolecular structures for the amyloid intermediate for A β (1-40) and the effects of the E22G pathogenic mutation on the molecular structure. In the last topic, we present our SSNMR studies on graphite oxide in efforts to establish SSNMR methods for characterizing chemically modified graphene, a single sheet of graphite. It is shown that multi-dimensional SSNMR on ¹³C-labeled graphite oxide provides detailed information on its complex chemical connectivity.⁵ The motivation and prospects in applications to chemically modified graphene will be discussed.

References:

- (1) Wickramasinghe, N. P.; Parthasarathy, S.; Jones, C. R.; Bhardwaj, C.; Long, F.; Kotecha, M.; Mehboob,
- S.; Fung, L. W. M.; Past, J.; Samoson, A.; Ishii, Y. Nature Methods 2009, 6, 215-218.
- (2) Wickramasinghe, N. P.; Kotecha, M.; Samoson, A.; Past, J.; Ishii, Y. J. Magn. Reson. 2007, 184, 350-356.
- (3) Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y. Nat. Struct. Mol. Biol. 2007, 14, 1157-1164.
- (4) Chimon, S.; Ishii, Y. J. Am. Chem. Soc. 2005, 127, 13472-13473.
- (5) Cai, W.; Pine, R. D.; Stadermann, F.; Park, S.; Shaibat, M.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J.; Chen, D. M.; Ruoff, R. S. *Science* **2008**, *321*, 1815-1818.

Photoilluminated and pressure induced isomerization of retinal proteins and structural changes of proteins as studied by solid-state NMR

○Akira Naito¹, Kazuhiro Ohsawa¹, Hirohide Nishikawa¹, Yuya Tomonaga¹, Akimori Wada², Naoki Kamao³, Izuru Kawamura¹

¹Graduate School of Engineering, Yokohama National University, Yokohama, Japan. ²Kobe Pharmaceutical University, Kobe, Japan. ³Faculty of Pharmaceutical Science, Matsuyama University, Matsuyama, Japan.

Pressure was applied to [15, 20^{-13} C]retinal-bacteriorhodopsin (bR) by the centrifugal force induced by MAS. It was observed that the ¹³C NMR signal of 13-*cis* configurations increased as the pressure was increased. It was also revealed that [1-¹³C]Tyr185 signals corresponding to 13-*cis* configurations increased as the pressure increased. These results clearly indicated that retinal isomerization was generated by pressure change and affects the change of protein structure. Photoillumination experiments were performed to observe the photoisomerization of phoborhodopsin (*p*pR) using the photoillumination system in the solid state NMR. We could successfully observe the photoisomerization from ground-state (13.4 ppm) to M-intermediate (22.3 ppm) since the life time of the M-intermediate is quite long. This result indicates that the M-state of retinal takes 13-*cis* configuration.

[Introduction]

Membrane proteins play important roles as transporter or signal transduction. Particularly retinal proteins usually absorb photo energy as a photoreceptor to generate photoisomerization, and consequently change the structure and dynamics of membrane proteins to show transporter and signal transduction activities. Although retinal isomerization rate is very rapid, mechanism of photoisomerization and a number of intermediates have been identified. On the contrary, Structure and dynamics changes of proteins induced by the photoisomerization of retinal have not been studied well in spite of the important process of activity. In this work, we have performed to clarify the change of structure of bacteriorhodopsin (bR) that has photoinduced proton pump activity and phoborhodopsin (ppR) that has signal transduction activity as a photoreceptor. To induce retinal isomerization, we have first developed the pressure¹ induced and photoillumination² systems equipped in the solid-state NMR spectrometer. Using this newly developed system, changes of protein structure accompanied by the retinal isomerization were investigated.

[Materials and methods]

Halobacterium salinarum was grown in a synthetic medium including $[\zeta^{-15}N]Lys$, $[15,20^{-13}C]$ retinal, and $[1^{-13}C]$ Tyr to yield ¹³C-labeled bR in PM. PM was isolated by standard method and suspended in HEPES buffer at pH 7. $[15,20^{-13}C]$ retinal-*pp*R with His-Tag at the C-terminal were expressed in *Escherichia coli* BL21 strain in M9 medium containing $[1^{-13}C]$ Tyr, and $[15,20^{-13}C]$ retinal. Purified proteins in DM micelles were

Retinal Protein, Photoilumination, Pressure application

○ないとうあきら,おおさわかずひろ、にしかわひろひで、ともながゆうや、わだあ きもり、かもなおき、かわむらいずる incorporated into a lipid film of egg PC. In situ photoillumination was performed by an optical fiber from outside the magnet through a tightly sealed piece of cap made of optical fiber glued to the rotor. Pressure on the samples was naturally applied by the centrifugal force induced by the MAS frequency. Since the centrifugal force is proportional to the square of rotor radius and frequency, the pressure at the inner wall was estimated using the following equation. $P=(4/3)\pi^2v^2r^2\rho$, where P, v, r and ρ represent pressure, MAS frequency, rotor radius and density, respectively.

[Results and Discussion]

Pressure induced structure change of bR shows MAS Fig. 1a frequency dependence of ¹³C NMR spectra of [15-¹³C]retinal-bR. The signal due to 13-cis, 15-svn retinal increased as the MAS frequency increased from 4 kHz to 9 kHz. This result indicates that equilibrium constant K=[all-trans]/ [13-cis, 15-*svn*] decreased, because molar volume change is negative value. Similarly, 13-cis signal increased as the pressure increased in the case of $[\zeta^{-15}N]$ retinal-bR, although signal broadening was observed at spinning frequency of 12 kHz (Fig. 1b). Further, $[1-^{13}C]$ Tyr185 signal due to 13-cis retinal increased as the pressure increase

(Fig. 1c). This result indicates that structure of proteins was also changed followed by the retinal isomerization.

Photoilluminated structure change of ppR

Photoisomerization of photo receptor protein, ppR, was observed by photoillumination experiments. Since life time of M-intermediate is about 1.7 s, one can expect that the M-intermediate can be trapped under photoillumination at the wave lengh of 500 nm. Actually ground-state (G-state) signal at 13.4 ppm decrease and M-state signal at 22.2 ppm increased for the [20-¹³C]retinal-*p*pR dissolved as octyl glycoside micelle. This signal can be assigned to the M-state with 13-cis retinal configuration. On the other hand, signal of the M-intermediate appeared with very weak intensity in the

Fig. 1. Structures of al-*trans* and 13-*cis*, 15-*syn* retinals (top) and MAS speed variation of ¹³C NMR spectra of $[15-^{13}C]$ retinal-bR?[ζ -¹⁵N]Lys216 (b), $[1-^{13}C]$ Tyr185-bR (c) (bottom).

Fig.2. ¹³C NMR spectra of [20-¹³C]retinal-*p*pR with photo illumination (top) and without photoillumination (bottom).

case of [20-¹³C]retinal-*p*pR incorporated in the egg PC lipid bilayers. Since the M-state is known to the signal transduction state, it is important to observe the structure change of proteins induced by the structure change of retinal and is now under investigation

[References]

- 1. I. Kawamura et al. Photochem. & Photobiol. 2007, 83, 346-350
- 2. I. Kawamura et al. J. Am. Chem. Soc. 2007, 129, 1016-1017

Travelling-Wave NMR and MRI

Klaas P. Pruessmann, Ph.D.

Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland

NMR signal detection is traditionally based on near-field Faraday induction (1) in one or multiple radio-frequency (RF) resonators that closely surround the sample. Other known principles, involving structured-material flux guides (2), SQUIDs (3), atomic magnetometers (4), or magneto-resistive elements (5) equally rely on close-range coupling. The present contribution addresses a mechanism that permits longer-range detection. As recently shown (6), NMR can also be excited and detected by travelling RF waves sent and received by an antenna.

In cylindrical NMR and MRI systems the formation of travelling waves at the Larmor frequency is usually suppressed by structures surrounding the sample, such as gradient coils, cryostats, and RF screens. Their conductive surfaces admit axially travelling waves only beyond some cut-off frequency which is roughly reciprocal to the bore width and typically much higher than the Larmor frequency. However, in recent wide-bore, high-field magnets the cut-off and 1H Larmor frequencies are sufficiently similar to enable the travelling-wave approach. Its first demonstration was accomplished in a superconducting 7.0-T magnet with a 58 cm-diameter bore lined with an RF screen. When enclosing only air the bore has a cut-off frequency of 303 MHz, which can be readily brought below the 1H Larmor frequency of 298 MHz by introducing small amounts of dielectric loading. Travelling waves along the magnet's bore were excited and detected by a circularly polarized patch antenna, effectively using the RF screen as a waveguide.

Using this setup, NMR spectra were obtained from 9 cm³ of aqueous 10% ethanol solution. The patch antenna was initially mounted at the end of the RF screen, 70 cm from the sample. The experiment was then repeated with gradually increasing antenna distances. Figure 1 shows the full initial spectrum and magnified methyl triplets for the subsequent scans. It illustrates that meaningful data were obtained with the probe placed well outside the magnet and a well-resolved spectrum was still detected at a distance of 2.6 m from the sample.

One potential benefit of the travelling-wave approach is enhanced excitation uniformity in large samples, particularly in human MRI subjects. In traditional resonant probes the RF fields form standing waves whose magnitude varies strongly across samples of similar size as (or larger than) the RF wavelength. The non-uniformity is due to the underlying electrodynamics, which require that the magnetic field exhibit curvature according to its frequency and the ambient material. In travelling waves this curvature translates into spatial phase variation, which does not hamper common MRI techniques. For reasons of safety, this benefit was initially demonstrated in a volunteer's lower extremities, ensuring that the chest and head remained outside the waveguide. The antenna was placed at the opposite end of the bore, 70 cm from the ankle. The resulting MR image (Fig.2, left) indeed shows the right lower leg with improved uniformity relative to a reference scan with a birdcage resonator (Fig.2, right).

By improving the extent and uniformity of spatial coverage, travelling-wave MRI promises to facilitate the exploration of highest field strengths for human studies (7, 8). A further promising application is high-field screening. The ability to perform spatially resolved NMR in large volumes may simplify studies of large numbers of small animals (9) or inanimate samples in parallel. Brief discussions will be dedicated to the reciprocity, efficiency, and sensitivity of travelling-wave NMR probes, the issue of RF diffraction, wave impedance matching, and the role of propagation-related phase delays.

Fig.1 (above): Travelling-wave NMR of aqueous ethanol solution, at antenna distances up to 2.6 m. **Fig.2:** Travelling-wave MRI of a lower leg (left), compared to data obtained with a birdcage resonator (right).

References: (1) Hahn, E. L. Phys Rev 77, 297 (1950). (2) Wiltshire, M. C. K. et al. Science 291, 849-851 (2001). (3) Day, E. P. Phys Rev Lett 29, 540 (1972). (4) Savukov, I. M. & Romalis, M. V. Phys Rev Lett 94, 123001 (2005). (5) Verpillat, F. et al. PNAS 105, 2271–2273 (2008). (6) Brunner, D., et al. Nature 457(7232):994-998 (2009). (7) Vaughan, T. et al. Magn Reson Med 56, 1274-1282 (2006). (8) Atkinson, I. C. et al. J Magn Reson Imag 26, 1222-1227 (2007). (9) Bock, N. A. et al. Magn Reson Med 49, 158-167 (2003).

第三日目 11月12日(木) 日本語セッション (一部英語)

Day 3 (Nov. 12, Thu.) (English & Japanese sessions)

FID の2次元処理の試み

〇高橋征三¹、荻野孝史²、山口行治³ ¹日女大理 ²(元)国立精神神経センター神経研 ³(株)実行データサイエン

2 dimensional array data was made from the 1 dimensional NMR acquisitions. The FIDs in 2D, arrayed from each acquisition, was made the principal component analysis. Making use of the largest 4 principal components, one dimensional spectrum was reconstructed substantially free from the field fluctuation. Then, the single FID was made an array in 2 dimensions, deleting the points successively. The resulting 2D FT spectrum contains all the peaks on the diagonal position, while each peak spreads according to its line-shape along the axes. Thus, the overlap of peaks became minimum as well as the influence of baseline roll. The power spectrum on the diagonal position gave rise to the Lorentzian line shape because of the presence of dispersion at the off-center position from the peak. The present method may most effectively benefit to the inherently heavily overlapped poor quality spectrum such as the case of MRS.

1次元情報しか持たないデータは2次元処理しても新しい情報をもたらさないので、まったく無意味な 計算のように思われる。ところが *in vivo* NMR はさまざまな悪条件下で測定および解析を余儀なくさ れる場合がある。たとえば試料が測定中に動く、S/N 比が小さい、水の消え残りの影響でベースライン がゆがむ、データ点が制限される、ピークの重なりが大きい等々である。こういう場合には2次元処理 に意外な効用があることが分った。

1次元情報を2次元配列にする2種類の方法を考えた。一つは FID を取得するたびに2次元配列として並べる方法である。すると本質的に同じ情報をもつデータ群が得られる。従来はその平均値しか利用されてこなかった。このデータに多変量解析を適用すれば、スペクトル全体がゆらぐような変動を容易に抽出できる。今回は見かけの化学シフトの変動を補正することを試みた。

二番目の試みとして、1つの FID から1 点ずつデータ点を取り除き2次元に配列した、擬似的2次元デ ータを作成した。FT の結果、各ピークは対角方向に並び共鳴線は軸方向に広がるので、ピーク間の 重なりは非常に小さく、結果としてベースラインのゆがみの影響は実質上無視できる程度まで軽減さ れることが分った。またピークの中心からはずれた位置に分散スペクトルが重なっているので対角方 向の絶対値表示スペクトルから擬似的吸収スペクトルが得られた。

[方法] 唾液サンプルをモデルに NS=4、8Kx64 の FID を集め、PLS_toolboxTM を使って主値解 析した。主値解析は FID の実数部分、虚数部分を別々に行い複素数に戻した。この結果は複素 数のまま計算できる MATLABTM の Statistics_Tool の結果と一致した。つぎに 8K の FID から 1 点ずつゼロで置き換えたデータを 2 次元方向に並べ、 8K x 8K の 2 次元データを作り MATLAB で FFT 処理した。位相補正は最初の FID で行い。得られたパラメータを 2 次元デー タに共通因子として与えた。

キーワード NMR データ処理 FID 主値解析 2次元 強度 MRS

[結果] 主値の第1成分(PC1)は90%程度の強 度を示した。絶対値では95%以上であった。 PC1をFTすると、スペクトルはノイズも含 めて積算スペクトルと一致した。

残りで1%以上の強度を持つ主値は4ない し5個であった。PC1~PC4を足し合わせる と、本来のスペクトルと同程度の線幅のスペ クトルが得られた。それ以上の成分を足し合 わせてもノイズが増大する以外の見かけ上の 変化はなかった。

つぎに1つの FID から1 点ずつ取り除いた FID を作成し2次元に並べたデータを通常の FFT を行って評価した。図は 1K x 1K データ セットで表示した。スペクトルの軸方向への 投影は1次元スペクトルと同じである。対角 方向は分散スペクトルの負の成分がピーク位 置を中心に対称的に存在する。その結果、見 かけ上二量子スペクトルと類似の線形を示 す。ピークの重なりは非対角位置に現れる。 したがってピークの重なりの影響や水の消え 残りに起因するベースラインゆがみの影響が 軽減される。またスピン多重項の分裂は対角 線上に乗るために、軸方向の成分はすべて単 ーピークとして現れる。このことはベースラ インの変動を伴うので、強度解析において一 長一短であろう。

図 2 1 次元データから得られる擬似的 2 次元 NMR スペクトル

対角方向には分散による負の強度が重なる(図2)。絶対値表示すると対角方向にローレンツ曲線 を与えるが、そのスペクトルは差分絶対値表示より強度ひずみが小さいと思われる。差分絶対 値法は S/N の低下が実用上の問題となるが、その点では本法がとくに優れているわけではない。 しかしピークが存在するかどうかの判定が難しいときには、本法は軸方向成分をトレースする ことによって確認できるという利点がある。

[考察] 本方法は MRS の解析に有用な手法を提供する。ベースライン評価が難しいときやピー クが重なりノイズとの区別が困難な場合にとくに有効と思われる。対角項の絶対値表示は位相 補正が困難なケースに差分絶対値法に代わる方法として提唱したい。 3L2 **超偏極希ガスNMR/MRIの研究開発:高効率生成装置と 多孔質材料ポア評価** ○服部峰之¹、平賀隆¹、秦信宏¹、早水紀久子¹、田中亮²、大竹紀夫² ¹(独) 産業技術総合研究所、

²東横化学(株)

Developement of Hyperpolarized Noble Gas NMR/MRI: Efficient Polarizer and Characterization of Porous Materials

OMineyuki Hattori¹, Takashi Hiraga¹, Nobuhiro Hata¹, Kikuko Hayamizu¹, Ryo Tanaka², and Norio Ohtake²

¹ National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. ² Toyoko Kagaku Co., Ltd., Kawasaki, Japan.

¹²⁹Xe NMR techniques have been applied to probe porosity of mesoporous materials and the pore size is known to relate with the chemical shift. Since the Van der Waals radius of Xe is known to be 0.216 nm, the possible pore size to adsorb xenon should be larger than 0.4 nm in diameter. Then the mean pore diameters ranging from 0.4 to 300 nm are the possible target to show the relationship experimentally. We have developed an apparatus to produce the laser induced hyperpolarized (HP) Xe gas and tried to apply it to a self-assembled porous silica sample, which is known as a candidate of low-dielectric constant materials for interconnects in future ultra-large scale integrated circuits.

【序論】³He, ¹²⁹Xeの核スピンが1/2の希ガスは、RbのD₁線(5²S_{1/2}-5²P_{1/2})を光ポンピン グしたアルカリ金属とのスピン交換を行って、NMR信号を飛躍的に増強できる[1]。超 偏極希ガスの生成については希ガスを滞留させた状態で、すなわちバッチ方式による 超偏極希ガスに変換する方法や、フローセルを用いた連続的な変換を行う方法が各種 提案されている[2,3,4]。超偏極キセノンガスを連続的に生成する際に、偏極率と生 成速度(フロー速度)を同時に向上させることが、課題となってきた。図1. に連続 フロー型超偏極希ガス生成装置の構成を示す[5]。最大効率で超偏極希ガスを得られ る構造として、隙間を介して対向する平板面を有し、照射するレーザー光の光パワー 密度が充分に生かせる範囲の照射面積を有する平面型フローセル部内の隙間に希ガ スと光ポンピング用触媒の混合気体を一方向に流通させるとともに、隙間を有するフ ローセル部内には励起光を照射し、かつフローセル部の励起光照射面に垂直に磁力線 が通過するように磁場を印加するようにした。これまでに、Rbの濃度を上昇するため に、セルの温度を110℃程度から300℃程度まで上昇させることを可能としたが、 レーザー光源の性能が不十分と思われ、80ccm程度のフロー速度では、1%程度の偏 極率しか観測されていなかった。

超偏極,希ガス,多孔質

○はっとりみねゆき, ひらがたかし, はたのぶひろ, はやみずきくこ, たなかりょう, おおたけのりお

図1.(左)連続フロー型超偏極キセノンガス製造装置(特許第4169122号)、 (右上)励起光の分布、(右中段)溜式(Batch)と(右下)連続フロー式(Flow)の比較

【超偏極希ガス生成用半導体レーザーの狭帯域化】常圧のガスと共存している、Rb の吸収線幅は、40W級795nm域のLDAに比較すると20倍程度狭い。半導体レーザーの 発振波長を常圧における Rb の吸収線幅程度まで狭帯域化し、波長の長時間安定性を 向上する。40W狭帯域化レーザーを4個製作した。(線幅0.1nm以下、40W×2×2=160W)。

図2. (左)VHG による半導体レーザー狭帯域化の光学配置図、(右)今回製作した LDA の写真(2個)

【実験と結果】27W を 160W に置き換えることにより、40~100ccm の流速で、偏極率約 20%の超偏極キセノンガスの生成に成功した。

【参考文献】

[1] W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, Phys. Rev. A29, 3092 (1984).

[2] B. Driehuys, G. D. Cates, E. Miron, K. Sauer, and W. Happer, Appl. Phys. Lett. 69, 1668 (1996).

[3] M. E. Wagshul and T. E. Chupp, Phys. Rev. A40, 4447 (1989). ; W. J. Cummings, O. Hausser, W. Lorenzon, D. R. Swenson, B. Larson, Phys. Rev. A51, 4842 (1995).

[4] 大竹紀夫、村山守男、平賀隆、服部峰之、本間 一弘,特開 2004-262668 号公報; 服部峰之,超偏極キセノンガス生成装置実用機の研究開発,工業材料,52(3),86-89 (2004).

[5] 服部峰之、平賀隆、村山守男, 特開 2003-245263 号公報

Structure and dynamics of proteins at work inside cells

Yutaka Ito^{1,2}, Junpei Hamatsu¹, Tomomi Hanashima¹, Masaki Mishima^{1,2}, Tsutomu Mikawa³, Markus Wälchli⁴, Brian O. Smith⁵, Masahiro Shirakawa^{2,6} Teppei Ikeya^{1,7} and Peter Güntert^{1,7}

¹Department of Chemistry, Tokyo Metropolitan University, Japan; ²CREST/JST; ³Research Group for Bio-supramolecular Structure-Function, RIKEN; ⁴Bruker BioSpin, Japan; ⁵Division of Biochemistry and Molecular Biology, University of Glasgow, UK; ⁶Department of Molecular Engineering, Kyoto University, Japan; ⁵Institute of Biophysical Chemistry, J. W. Goethe-University Frankfurt, Germany.

Abstract

In-cell NMR spectroscopy yields multi-dimensional NMR spectra of macromolecules in living cells^{1,2}. For the first time we have determined the 3D structure of a protein exclusively on the basis of information obtained in living cells³. This approach provides the tools that will permit the effects of molecular crowding in the cytosol and the conformations of proteins to be investigated in living cells.

In this presentation the efficiency of the key methods for this success, rapid data collection using nonlinear sampling and selective protonation at methyl groups to enable the identification of unambiguous long-range NOE interactions, will be discussed. We also present our recent applications of in-cell NMR to *Thermus thermophilus* HB8 TTHA1718 and *Streptococcus* protein G B1 domain in living *E. coli* cells.

Introduction

Proteins in living cells work in an extremely crowded environment where they interact specifically with other proteins, nucleic acids, co-factors and ligands. *In vivo* observations of 3D structures, dynamics and interactions of proteins are required for fully understanding the structural basis of their functions inside cells. The non-invasive character of NMR spectroscopy and its ability to provide data at atomic resolution make NMR ideally suited for the task. Recently, these advantages of NMR spectroscopy have been combined to obtain information about the conformation and dynamics of biological macromolecules inside living cells³. In order to overcome problems caused by the instability and the low sensitivity of living cell samples, we used rapid measurement of the 3D NMR spectra by nonlinear sampling of the indirectly acquired dimensions and maximum entropy data processing (MaxEnt), which have not however been used widely, in particularly, for NOESY-type experiments. Here we evaluated the effect of the artefacts arising by employing nonlinear sampling and MaxEnt processing to 3D NOESY-type spectra by calculating structures from distance restraints obtained in simulated 3D NOESY spectra with various nonlinear sampling points.

Results and Discussion

The simulated raw data were reconstructed from real 3D ¹³C-separated and ¹⁵N-separated NOESY-HSQC spectra, which were used for the structure determination of TTHA1718 *in vitro*. The original 3D raw data have 512, 128 and 32 complex points for t_3 (¹H), t_1 (¹H) and t_2 (¹³C or ¹⁵N) dimensions, respectively. Total six pairs of simulated NOESY spectra were

Key words: in-cell NMR, nonlinear sampling, maximum entropy processing, selective methyl protonation, protein structure

-74 -

3L3

processed. The analysis of NOE cross peaks in these simulated spectra and structure calculations were performed by employing essentially identical protocols used for the structure determination of TTHA1718 in-cell³. Figure 1 shows the superposed 20 final structures calculated from each sets of simulated 3D ¹³C-separated and ¹⁵N-separated NOESY spectra.

The main expected artefacts arising from nonlinear sampling and MaxEnt processing were (1) the mis-calibration of intensities of cross peaks and (2) the emergence of false cross peaks. The latter problem is presumably significant because the not automated NOE assignment algorithm excludes the "orphan" artefact cross peaks. The deviation of intensities for NOE

Figure 1: TTHA1718 structures calculated from simulated 3D NOESY data with various nonlinear sampling points. **a**, 64 and 32 linearly sampled complex points for t_1 (¹H) and t_2 (¹³C or ¹⁵N), respectively. **b**, 1024 randomly selected complex points out of the sampling space with 64 (t_1 , ¹H) x 32 (t_2 , ¹³C or ¹⁵N) complex points. **c**, 512 randomly selected complex points. **d**, 256 randomly selected complex points. **g**, 16 and 8 linearly sampled complex points for t_1 (¹H) and t_2 (¹³C or ¹⁵N), respectively. For the structure calculations presented in **f**, NOE-derived distance restraints involving side-chain methyl groups, which were used for the case of TTHA1718 in-cell, were added.

cross peaks from "real" values is usually not so harmful for structure calculations, since the NOE intensities were generally interpreted to distance restraints with relatively large (a few angstroms) tolerances. However, the mis-calibration of intensities was eventually significant in the case with much reduced data points, e.g. the case with 128 random sampling points. There was a tendency that the more data points were omitted, the more underestimated the intensities of weaker cross peaks. This caused the drop of numbers of picked NOE cross peaks in the spectra, thus providing poorer convergence in final structures. Nevertheless, we would emphasise that, with the same number of FIDs, the convergence in final structures were much worse when the data were acquired linearly, suggesting that nonlinear sampling approach is very advantageous, comparing to conventional linear sampling scheme. Also the result showed that the poor convergence in final structures can be overcome by supplementing some "critical" selectively measured long-range distance restraints, e.g. NOE-derived distance restraints involving side-chain methyl groups. As an another demonstration of our methodologies for protein structural analyses in vivo after the case of Thermus thermophilus HB8 TTHA1718, we initiated in-cell NMR studies of Streptococcus protein G B1 domain in living E. coli cells.

References:

- 1. Serber, Z. et al. High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. **123**, 2446-2447 (2001).
- Reckel, S., Hänsel, R., Löhr, F. & Dötsch, V. In-cell NMR spectroscopy. Prog. Nucl. Mag. Res. Sp. 51, 91–101 (2007).
- 3. Sakakibara, D. et al. Protein structure determination in living cells by in-cell NMR spectroscopy. *Nature* **458**, 102-105 (2009).

3L4 Structure and functions of domains of transcription factors studied by NMR spectroscopy and interactome analyses —Analyses of the proteins with GST tag—

○Shunsuke Meshitsuka¹, Yuki Horie¹, Kazuya Takahashi¹, Ojeiru F. Ezomo¹, Mohammed S. Mustak¹, Takahisa Ikegami², Hiroshi Hirota³, Kazuya Yamada⁴, Tamio Noguchi⁵

¹Tottori University Graduate School of Medical Science, Institute of Regenerative Medicine and Biofunction, ²Osaka University Institute for Protein Research, ³Riken, ⁴Matsumoto University, ⁵Osaka Ohtani University

The structures of the DNA binding domains of transcription factors have been well studied and classified into several types of functional structures. However, the structure and function of the domains of transcription factors other than the DNA binding domains were not yet known. It has been reported that the processes of transcription were regulated by several transcription factors interacting with each other. In the present investigation, we analyzed the structures of N-terminal and C-terminal domains of transcription factors such as HEX, GATA2, SHARP2 and HNF1 α in the presence GST-tag. The protein-protein interaction was also analyzed by surface plasmon resonance (SPR).

Regulation of the cell differentiation is very important in the progress of regenerative medicine. However, the mechanism of the regulation of differentiation has not been revealed yet. The structures and the roles of DNA binding domains of transcription factors have been understood well. However, the structures and functions of the domains of transcription factors other than the DNA binding domain have scarcely been reported. Hex (haematopoietically expressed homeobox) is essential for monocyte and B cell differentiation. Hex is one of the orphan homeobox genes, which is identified in human promyelotic leukemia cell line and found in rat, mouse, chicken, xenopus, zebrafish and C.elegance. Hex is constituted 271 amino acids and has a proline rich repressor domain in N-terminal region (Hex-N:45-136AA), a homeodomain in center (Hex-HD:137-196AA) and an activator domain in C-terminal region, which has many negatively charged amino acids such as glutamic acid and aspartic acid (Hex-C:197-271AA). In early mouse embryo, Hex is expressed in anterior visceral endoderm and rostral definitive endoderm. In adult mouse, Hex is expressed in liver, lung, thyroid gland, spleen, vascular smooth muscle cells and multipotent haematopoietic cells.

Transcription factor, protein-protein interaction, GST-tag

○めしつかしゅんすけ, ほりえゆうき, たかはしかずや, エゾモ オジェイル, モハメド ムスタ ク, いけがみたかひさ, ひろたひろし, やまだかずや, のぐちたみお The knock out mouse of Hex is embryonically lethal around E10.5 due to a lack of substantial liver formation, thyroid gland formation, forebrain formation. In general, homeobox transcription factors bind to A/T rich sequences. Hex binds directly to specific sequences such as 5'-TAAT-3', 5'-CAAG-3', 5'-ATTAA-3' using homeodomain. It is also reported that Hex binds directly to transcription factors such as HNF1a, AP1, GATA2, PML and HC8, and regulates the transcription of their target genes and contributes to regulate the differentiation of the cells. However, the detail function of Hex is unclear till now. The methods of the production and purification of proteins using affinity tag such as GST (glutathione S-transferase) tag, histidine tag, MBP (maltose binding protein) tag are familiar in the protein science for their easy and rapid procedure. The molecular weight of protein is restricted in NMR analyses. The protein larger than 30kDa molecular weight is not suitable for ordinary NMR analyses by the reasons of peak broadening and signal overlapping. Thus, it is thought that affinity tags except for His tag are necessary to be removed from fusion proteins by protease. GST-tag is beneficial for expression and purification in E.coli. However, some problems in preparing NMR samples often arise when fusion protein is cleaved by protease such as thrombin. One of the problems is nonspecific cleavage reaction by protease and another problem is decrease of the solubility of the protein after removing GST-tag.

The domains of Hex, HNF1 α , SHARP2 and GATA2 were expressed with GST-tag in E.coli by the conventional method and purified by gel chromatography to be a single band in SDS-PAGE. The labeled proteins were obtained in M9 culture with ¹⁵N-ammonium chloride and ¹³C-glucose. NMR measurements were carried out by Varian Inova 500 at 25°C with 10% of D₂O in shigemi tubes. NMR spectral analyses were carried out by NMRPipe and displayed by sparky software. The protein structure was calculated by Cyana.

NMR spectra of Hex-C were measured without cleaving GST-tag and sufficiently well resolved signals were obtained. The signals from the backbone atoms of ¹H, ¹³C and ¹⁵N were assigned. In the present study, we analyzed the detail structure and functions of Hex-C, which is negatively charged and activator domain of the transcription factor Hex. It is also shown that the C terminal domain of GATA2 interacts with Hex-C. On the other hand HNF1 α -POU domain interacts with Hex-N. The protein-protein interactions were confirmed by SPR analyses to obtain the dissociation constants of specific interactions.

 3L5
緩和解析による藍色細菌 Synechococcus PCC. 7942の 転写因子SmtBの亜鉛イオン濃度検知機構解明
○森田勇人^{1,2}、林秀則^{3,4}、阿部俊之助¹、池上貴久⁵
¹愛媛大・農,²愛媛大・ベンチャービジネスラボラトリー
³愛媛大・無細胞、⁴愛媛大・理、⁵阪大・蛋白研

Relaxation analysis for clarifying the molecular mechanism of zinc ion concentration sensing by SmtB, a cyanobacterial transcription factor of *Synechococcus* PCC. 7942.

OEugene Hayato Morita^{1,2}, Hidenori Hayashi^{3,4}, Shunnosuke Abe¹, Takahisa Ikegam⁵
¹ Faculty of Agriculture Ehime University, Ehime, Japan, ² Venture Business Laboratory, Ehime University, Ehime, Japan, ³ Cell-Free Sciemce and Technology Research Center, Ehime University, Ehime, Japan, ⁴ Faculty of Science, Ehime University, Ehime, Japan, ⁵ Institute for Protein Research, Osaka University, Osaka, Japan.

In *Synechococcus* sp. PCC 7942, the *smt* locus is responsible for tolerance to divalent cations such as zinc and cadmium. In the *smt* locus, there are two divergently transcribed genes, *smtA* and *smtB*. The *smtA* encodes a class II metallothionein, and the *smtB* encodes a trans-acting repressor for smtA expression. SmtB also functions as the sensor for cytosolic divalent cations, and the relationship between the structural changes of SmtB, induced by the metal-ion sensing, and the functional regulation of SmtB is still unclear.

To this end, we have measured the T1, T2, and NOE relaxation NMR spectra of each amino acid constituting SmtB with/without the presence of zinc ions. In consideration of our biochemical results, we have found that in the N-terminal flexible region, the rigid structure around Cys14 is induced by the zinc ion binding with SmtB.

「研究の背景と目的」

重金属イオンは、細胞内の代謝に必須 の微量元素であるものが多く存在す るが、その適正量からの過剰/不足は 強い細胞毒性を示す場合が多く、その 細胞内濃度制御は厳密に行われてい る。藍色細菌 Synechococcus PCC. 7942 は、細胞質内の亜鉛イオンを初 めとする2価金属イオン濃度をクラ スⅡタイプのメタロチオネイン SmtA の発現により制御している。SmtA の

図1 藍藻の重金属耐性機構のモデル

発現は重金属イオン濃度センサー機能と転写抑制因子機能を併せ持つ122アミノ酸から構成される SmtB(ゲノム上でもSmtA の上流域にコードされている)により制御さ 藍色細菌,転写因子,亜鉛イオン濃度検知機構

○ もりたはやと、はやしひでのり、あべしゅんのすけ、いけがみたかひさ

れている。SmtB は亜鉛イオン以外に、カドミウムイオン、ヒ素イオン、水銀イオン などの2価金属イオン濃度を検知する能力を持つが、その検知濃度域は金属イオンの 種類により異なっている。また、近年 SmtB のホモローグが淡水性藍色細菌だけなく 海水性藍色細菌においても見つかってきている。さらに、これら藍色細菌の生育環境 に含まれる2価金属イオン濃度に対する耐性は菌の種類により異なっており、SmtBに より発現制御を受ける2価金属イオン濃度の直接の濃度調節体は、メタロチオネイン 様タンパク質だけでなく、イオントランスポーターなど多くの種類があることもわか ってきている。

そこで本研究では、SmtB による細胞内2価金属イオン濃度検知・制御機構を特に亜 鉛イオンについて構造化学的手法と分子生物学的手法とを組み合わせて解明するこ とを目的とした。

「実験手法」

SmtB をコードする遺伝子を大腸菌大量発現用ベクターに組み込むことで作製した 大腸菌大量発現用プラスミドを大腸菌 BL21 (DE3) / pLysS に形質転換することで、 SmtB の 大 腸 菌 大 量 発 現 系 を 作 製 し た 。 SmtB へ の 点 変 異 の 導 入 に は 、 KOD-Plus-Mutagenesis Kit (TOYOBO)を用いた。SmtB の安定同位体標識は、M9 最少 培地に添加するN源、C源に¹⁵N塩化アンモニウム、¹³Cグルコースを用いることで行っ た。亜鉛イオンを結合した SmtB は、SmtB 溶液に酢酸亜鉛を2等量添加することで作 製した。

「実験結果」

亜鉛イオン結合に伴う、SmtB を構成するアミノ酸主鎖の化学シフトの変化量の大きさをもとに、点変位の導入を行い、亜鉛イオン濃度との結合親和性を、ゲルシフトアッセイなどにより、解析することで、SmtB への亜鉛イオンの結合サイトを特定するとともに、SmtB がその選択的 DNA 配列を認識するために必須のアミノ酸残基を特定した。

さらに、亜鉛イオンとの結合に伴う SmtB 主鎖の運動性の変化をT₁, T₂, NOE 測定を 行うことで解析したところ、Cys14を含む SmtB のアミド末端領域の運動性が低下し ており、亜鉛イオンとの結合に伴い、その構造が堅くなっていることがわかった。ま た、この領域を欠失した SmtB を作製すると、亜鉛イオンとの結合能力が低下するこ とから、SmtB と亜鉛イオンとの結合において、Cys14 を含むアミド末端領域の構造 変化が、SmtB と選択的DNA配列との結合親和性を弱める原因となる構造変化を誘起す ると結論した。

酵素反応のリアルタイムモニタリングとアプタマーによ るプリオンタンパク質の捕捉機構

古川亜矢子¹,真嶋司¹,永田崇¹,杉山隆一²,高久洋²,西川富美子³, 西川諭³,〇片平正人¹ ¹横浜市大・院生命ナノシステム科学,²千葉工大・生命環境,³産総 研・年齢軸

Real-time monitoring of enzymatic reaction and prion protein-RNA aptamer interaction

Ayako Furukawa¹, Tsukasa Mashima¹, Takashi Nagata¹, Ryuichi Sugiyama², Hiroshi Takaku², Fumiko Nishikawa³, Satoshi Nishikawa³ and OMasato Katahira¹

¹Grad. Sch. Nanobioscience, Yokohama City Univ., Yokohama, Japan, ²Life & Env. Sci., Chiba Inst. Tech., Chiba, Japan, and ³Age Dimension Res. Center, AIST, Tsukuba, Japan.

APOBEC3G (A3G) converts a cytosine of HIV DNA to a uracil through deamination, which confers anti-HIV activity on A3G. We succeeded to monitor the deamination reaction in real-time by the use of NMR signals. This method is superior to conventional biochemical methods to examine the enzymatic reaction in terms of its higher temporal and spatial resolution. This time, this method has demonstrated that a substrate site located close to a 5' end of DNA is deaminated faster than that to a 3' end. This result suggests that A3G processively deaminates multiple substrate sites through sliding in a 3'---> 5' direction. The study on the mode of the interaction between prion protein and its RNA aptamer will also be presented.

[序]

HIVはヒトに感染後、自らのゲノムRNAを鋳型にマイナス鎖DNAを合成し、その後こ れを2本鎖DNAとしヒトのゲノムに組み込む。ヒトの有するAPOBEC3G(A3G)タンパク質 は、HIVのマイナス鎖DNAに作用し、シトシン塩基を デアミネーションしてウラシル 塩基に変換する事で、HIVのゲノム情報を無意味なものにする。こうしてA3Gは抗HIV 活性を発揮する。

我々はA3Gの立体構造及び1本鎖DNAとの相互作用様式を決定した[1]。さらにNMRシ グナルを用いる事で、A3Gによるデアミネーション反応をリアルタイムでモニタリン グする事に成功した[1]。この手法はこれまで用いられていた生化学的手法に比べ、 デアミネーションが生じている箇所をより高い空間分解能で特定でき、またリアルタ イムでのモニタリングである為、反応過程をより高い時間分解能で追跡できるという 優位性を有している。また酵素反応を生じさせる際の温度、基質と酵素の濃度や比率 等を調整する事で、反応速度をモニタリングに適した速度にする事ができる。これに よって解析可能な対象過程を広げ、反応の動的メカニズムにより踏み込む事ができる。 今回この手法を応用し、A3Gの反応機構の本質を理解する事を目指した結果について 報告する。

リアルタイムモニタリング、プリオンタンパク質、アプタマー

ふるかわあやこ,ましまつかさ,ながたたかし,すぎやまりゅういち,たかくひろし, にしかわふみこ,にしかわさとし,〇かたひらまさと またプリオンタンパク質とそのRNAアプタマーの相互作用に関して得た知見についても報告する。

[結果と考案]

①リアルタイムモニタリングによるA3Gの反応機構の解析

A3Gによるデアミネーション反応の基質となる配列を2つ有した1本鎖DNAを調製した。これにA3Gを作用させデアミネーションによるシトシンからウラシルへの変換反応を、シトシン及びウラシルのピークの強度をモニターする事によって追跡した。その結果、5、端寄りの基質配列中のシトシンのピークの強度がより早く減衰・消失し、それに対応してウラシルのピークがより早く出現・増大する事が分かった(Figure 1)。即ちDNAの5、端寄りに配置された基質配列中のシトシンの方が、同3、端寄りに配置された基質配列中のシトシンの方が、同3、端寄りに配置された基質配列中のシトシンよりも早くデアミネーションされる事が分かった。この結果は、A3Gが1本鎖DNA上で3、→5、の方向にスライディングしながらデアミネーション反応を起こす為、確率論的に5、端寄りの基質配列においてより高い頻度で塩基の変換が生じたことを示唆していると考えられる。

②プリオンタンパク質とそのRNAアプタマーの相互作用の解析

r(GGAGGAGGAGGA)(R12)は、プリオンタンパク質を高い親和性(解離定数~10⁻⁸ M)で 捕捉するRNAアプタマーである。我々はR12が分子内で平行型の4重鎖を形成し、それ がさらに2量化した構造をとる事を見出した[2]。プリオンタンパク質の系統的な部分 ペプチドを用いた結合実験から、プリオンタンパク質中の2つの部位がR12との結合に 関与している事が分かった。この2つの部位の変異体を用いた解析から、リジンとリ ン酸基との間の静電相互作用、及びトリプトファンとグアニン塩基テトラッド平面と の間のスタッキング相互作用が、高い親和性をもたらしていると考えられた。さらに 2量化したR12の各単量体が、プリオンタンパク質中の2つの結合部位と同時に結合す る事によって、親和性がより高められている事が示唆された。

- [1] Furukawa et al., EMBO J., 28, 440-451 (2009).
- [2] Mashima et al., Nucleic Acids Res. in press (2009).

Figure 1. Time-course of the intensity after the addition of A3G. Peaks 1 and 2 correspond to each cytosine in the site located close to either 5' or 3' end, respectively. Peaks 1' and 2' correspond to each uracil converted from the two cytosines, respectively.

新方式NMRによる世界最高感度実現

 ○ 和久田毅¹,川崎健司¹,一木洋太¹,朴ミンソク¹,田中秀樹¹, 岡田道哉¹,高妻孝光²,北口仁³
¹日立製作所 日立研究所
²茨城大学
³物質・材料研究機構

Sensitivity improvement of NMR spectrometer with cross-bore, superconducting split-magnet, and cryogenic solenoidal probe coil

⊙Tsuyoshi Wakuda¹, Kenji Kawasaki¹, Yota Ichiki¹, Minseok Park¹, Hideki Tanaka¹,

Michiya Okada¹, Takamitsu Kohzuma² and Hitoshi Kitaguchi³ ¹Hitachi Research Laboratory, Hitachi Ltd., Hitachi, Japan. ²Ibaraki University, Mito, Japan. ³National Institute for Materials Science, Tsukuba, Japan.

We have been developing a new NMR spectrometer having two special features; one is the superconducting split-magnet, and the other is the cryogenic solenoidal RF coil. We have successfully completed the magnet development with magnetic fields up to 14 Tesla. A cryogenic probe for the novel 600MHz NMR magnet has optimized. Then, a signal to noise ratio of the novel 600MHz NMR has reached over 8000. In this presentation, we show the recent achievements on the development of this new NMR spectrometer.

我々は新方式NMRの開発を2003年度から行ってきた。新方式NMRの特徴は、ス プリット型超電導磁石とソレノイド型RFコイルであり、従来方式NMRを超える測定 感度の実証を主な目標としてきた。超電導磁石がNMRに利用されるようになって以 来、サドル型RFコイルを用いた装置が主流となった。一般的な超電導磁石の中では、 ソレノイド型RFコイルに溶液試料入りの試験管を装填することが困難なためである。 これに対し、我々はスプリット型超電導磁石を開発することで、感度優位性を持つソ レノイド型RFコイルによる溶液NMR測定を可能とした。まず300MHz機を作製し、 基本設計の妥当性と原理確認検証を05年度までに終了した。その成果を受けて 600MHz機と300MHz2号機を作製した。

Fig.1に新方式NMRの外観と断面図を示す。プローブは磁石横方向から挿入され, 試験管は磁石上方から挿入される。静磁場方向は水平方向であり,高周波磁場方向は 鉛直方向である。超電導磁石は左右2分割された形で構成され,1つの容器に納めら れている。このような構造の超電導磁石は世界で初めてである。主磁場発生用の超電 導主コイルの内側にも磁場調整用の超電導シムコイルを配置することで,磁場中心の 直径20mm球における不整磁場振幅を0.1ppm以下に抑制した^(1,2)。

新方式NMRにおける感度向上履歴をFig.2に示す。作製した300MHzおよび 600MHz常温プローブを用いソレノイド型RFコイルの感度優位性を実証した⁽³⁾。平行 新方式NMR,スプリット型超電導磁石,ソレノイド型RFコイル

○わくだつよし,かわさきけんじ,いちきようた,ぱくみんそく,たなかひでき, おかだみちや,こうづまたかみつ,きたぐちひとし

3L7

して600MHz低温プローブの開発を進めた。低温プローブの冷却システムおよび低雑 音アンプ (LNA) も独自開発したものである⁽⁴⁾。2008年までに標準試料 (直径5mm管, 0.1% E.B.) における測定感度は5000に到達していた⁽⁵⁾。しかし,更なる感度向上には, 試料における信号損失の低減と,高周波磁場均一度向上の両立が必要であった。この 課題に対し,高周波磁場シミュレーションを実施し,ソレノイド型RFコイルの改良を 行った。その結果,標準試料における測定感度において8000を超えることに成功した。 感度優位性の実証以外では,常温プローブによる多核種測定,傾斜磁場利用測定⁽⁶⁾,

+字ボアを活かしたフロー測定⁽⁷⁾の実証を行った。以上の測定には独自開発した分光器,ロックシステム⁽⁸⁾を用いた。このように,新方式NMRによる感度優位性と基本性能の実証を成功裡に終了した。現在は,600MHz機を一時休止し,300MHz2号機による新規アプリケーションの実証を継続中である。詳細は当日報告する。

本研究の推進に際して,正田 英介 先生,木村錫一 先生,神 田大輔 先生,森田勇人 先生の ご指導,ご支援を賜りました。 また,本研究の一部は,文部科 学省科学技術振興費委託研究 (17文科振260号,18文科振489 号,19文科振199号)の一環と して行われました。

参考:NMR討論会講演要旨集 Fig.2 History of Signal-to-noise ratio at our system. (1-4, 6-8) 第46回 (2007) P392, 396, 400, 404, 408, 414, 418, (5) 第47回 (2008) P390

新方式NMR,スプリット型超電導磁石,ソレノイド型RFコイル

○わくだつよし,かわさきけんじ,いちきようた,ぱくみんそく,たなかひでき, おかだみちや,こうづまたかみつ,きたぐちひとし

固体回転試料中の同種核多スピン系のスピン拡散:拡散

速度解析とその応用

○桑原大介¹,持田智行²,仁木國雄³ ¹電通大研究設備センター,²神戸大学理学研究科, ³電通大量子・物質工

Spin diffusion for homonuclear multi-spin systems in rotating solids: the analytical expression of the spin-diffusion rates and its applications

○Daisuke Kuwahara¹, Tomoyuki Mochida², Kunio Nikki³

¹Coordinated Center for UEC Research Facilities, The University of Electro-Communications

²Department of Chemistry, Graduate School of Science, Kobe University

³Department of Applied Physics and Chemistry, The University of Electro-Communications

In this study, we focused on deriving an analytical expression for the spin-diffusion rate W_z of a homonuclear multi-spin system undergoing MAS. The analytical expression derived here consists of a dipolar coupling constant and an integral term. The integrand consists of FID signal functions of two resolved resonance lines among which the polarization transfer takes place. Therefore, in principle the spin-diffusion rate W_z can be calculated without any special information such as double-quantum NMR spectra. In addition, we presented a new model for a homonuclear multi-spin system in the solid state. Two applications, in which the analytical expression modified for this model are employed, are presented. Applications of this expression based on the new model will be of great utility for elucidating the structure of various molecular materials in the solid state.

1. 緒言

本研究では、マジック角試料回転を行っている固体試料中の同種核多スピン系(¹H 多スピン系、¹³C多スピン系など)に対するスピン拡散速度解析式(基本式)を導出 した.基本式は、双極子結合定数の項と積分項から構成される.積分項には、その間 でスピン拡散が起きる2本の共鳴線のFID信号のみが含まれている.さらに本研究で は、固体試料中の同種核多スピン系をいくつかの部分系に分ける新たなスピン系モ デルを提唱した.新たなスピン系モデルに合わせて基本式を変形した結果、部分系間 の最近接原子間距離を計算することが可能となった.今回、この新しい解析手法(す なわち基本式と新たなスピン系モデルの組み合わせ)を用いて、電荷移動錯体におけ る相転移前後の構造変化の解明、および、高速試料回転でカーボンフファイバーに浸 透した*n*-アルカンの浸透状態の解明 を行った.

spin-diffusion, ¹H, MAS

○くわはらだいすけ、もちだともゆき、にきくにお

2. 基本式と新たなスピン系モデル

基本式の導出は、Suter[1]のスピン系モデルに基づき、またKubo[2]のスピン拡散速度式導出法を参考にして行った. Fig. 1(a)はSuterにより提唱された同種核多スピン系のモデルであり、このモデルを使うと部分系 S_1 , S_2 間のスピン拡散速度 W_z は次式で与えられる.

Figure 1. (a) Model system by Suter *et al.* (b) Model system presented in this study.

現実の物質系において、その中の同種核多スピン系が Fig. 1(a)のように近似のできる ことはまれである.本研究では Fig. 1(a)に比べてはるかに応用範囲の広い同種核多ス ピン系モデルとして、Fig. 1(b)を提唱した.我々はさらに、Fig. 1(b)のもとでも $d_c = \gamma_s^2 \hbar / r_0^3$ (3')と読みかえるだけで、基本式(1)がそのまま成立するということを明ら かにした.

3. 応用例

デカメチルフェロセン(D)・アセナフテンキ ノン(A)錯体 (Fig 2(a)) はフェロセンの特徴 を生かした電子機能と特徴的な分子骨格を 持つ新規物質である. DA錯体は, -16℃で構 造相転移を起こすことが知られているが, X 線結晶解析では 低温側の結晶構造を明らか にすることができなかった. 今回, この新し い解析手法 (すなわち基本式と新たなスピン 系モデルの組み合わせ)を用いて、"D分子と A分子の最近接¹H間距離が 相転移前後で 0.4Å変化すること"、"相転移温度下でA分子 がD平面に関して 8.4°度傾くこと"を見出し た. 応用例 2 の詳細については,本会議場に て説明する.

Figure 2. (a) Molecular arrangement in the complex, based on the X-ray data at 20 °C. (b) Molecular arrangement at -27.7 °C determined on the basis of Eqs. (1)-(3).

[2] Kubo, A.; McDowell, C. A. J. Chem. Soc., Faraday Trans. 1 1988, 84, 3713-3730.

固体¹⁵N NMRによるポリピロールの炭素化過程の研究

〇黒木重樹¹、川内進¹、尾崎純一¹、宮田清蔵^{1,2}
¹東京工業大学・院・理工・有機・高分子物質専攻
²新エネルギー・産業技術総合開発機構

Carbonazation Process of Polypyrrole studied by SS ¹⁵N NMR

Shigeki KUROKI,¹ Susumu Kawauchi,¹ Junichi OZAKI,¹ and Seizo MIYATA^{1,2}

¹Department of Organic and Polymeric Materials, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN

²New energy and Industrial Technology Development Organization, 1310 Omiya-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8554, JAPAN)

Tel: +81-3-5734-2581, Fax: +81-3-5734-2581, E-mail: <u>skuroki@polymer.titech.ac.jp</u>

Recently, we developed a new non-precious ORR catalyst carbonized from nitrogen-containing polymers. We call these materials carbon alloy catalysts (CACt). The CACt combine high oxygen-reduction activity with good durability. We considered that the nitrogen species contained in CACt are very important for ORR activity and focused on characterizing the chemical structure around the nitrogen atoms in CACt. Therefore we synthesized ¹⁵N labeled polypyrrole (PPY) and pyrolyzed PPY at various temperatures, then measured solid state ¹⁵N NMR spectra and XPS spectra. E_{onset} of PPY pyrolyzed at 900 deg. (PPYFe900) is 0.82V.

[緒言] 固体高分子形燃料電池(PEFC)は、低温発電が可能であるため耐高温用断熱材などを使わ なくても良いという長所があるものの、高い触媒機能を有する高価な白金を使用しなければならない コスト上の大きな欠点がある。白金は、燃料電池の正極及び負極の両極で使用されている。負極の白 金は、ルテニウムとの合金やその微粒子化による表面積の拡大などをはかることにより使用量は年々 少なくなっている。しかしながら、正極においては未だに酸素還元触媒として白金が多量に使用され ている。このような状況下、白金に代わる高い酸素還元特性と安定性を有する新触媒の開発が、国内 外で精力的に進められている。

これまでの研究は鉄やコバルトなどの卑金属を活性中心とする触媒の開発であった。この研究は、 Jasinskiによるコバルトフタロシアニン触媒の発見と、それに続くJahnkeらによる広範なN₄系錯体の 探索とその熱処理による高性能化の流れを汲むものである。この他、酸化物、窒化物、炭化物、カル コケナイド化合物などのセラミックス材料も検討されている。しかしながら、これらの触媒の発電性 能は十分ではなく、また耐久性の面でも問題があり実用化に至ってはいない。2006 年、Zelenayらは、 化学的に調製されたCo-Polypyrrole-Carbon composite (Co-PPY-C)が熱処理することなしに、高い酸 素還元活性を示すことを示した[1]。しかし、その後はポリアニリンに鉄・コバルト系の塩を混合し、 熱処理することにより高活性な非白金系酸素還元触媒が得られることを報告している。一方、我々の グループは鉄及びコバルトフタロシアニンと熱硬化性樹脂の混合物を 600~1000°Cの温度で熱処理し た試料が高い酸素還元活性を示すことを報告してきている[2]。その酸素還元の活性点に関してはまだ 結論は得られていないが、窒素原子の存在がその活性に何らかの寄与をしていると考えている。

以上踏まえ、我々は窒素含有高分子ポリピロールの熱処理物が酸化還元活性を示すか、また化学構造、特に窒素原子周りの構造がどのように変化しているかを固体 NMR および XPS を用いて明らかにしたのでその結果を報告する。

キーワード:ポリピロール、炭素化過程、固体¹⁵N NMR 〇くろきしげき,かわうちすすむ、おざきじゅんいち、みやたせいぞう [実験]ポリピロール(PPY)は2つの方法で化学重合 した。一方は塩化第二鉄(FeCl₃)を、もう一方は過 硫酸アンモニウム(APS)を酸化剤として用い重合 を行った。¹⁵NNMR測定のため、¹⁵Nラベルピロ ールを通常のピロールに12.5%~50%混合するこ とにより試料を合成した。今後これらをそれぞれ PPYFeおよびPPYAと呼ぶ。試料はN₂ガス気流下 で熱処理を行った。

電極触媒活性は回転ディスク電極法を用いて 評価、熱分解過程はTG/DTA、熱分解過程におけ る構造変化は固体 NMR、最終生成物の構造は固体 NMR 及び XPS で評価した。

[結果・考察] まず、TG/DTA より、室温から 1000℃ までの PPYFe および PPYA の熱処理による質量減 少過程を調べた。その結果、両者ともほぼ同様の質 量減少過程をたどることがわかった。

次に、回転ディスク電極法を用いて得られた酸素 還元ボルタモグラムを Fig.1 に示す。同じ PPY を 原料にしながら、異なる酸素還元活性を持つ試料が 得られたことがわかる。この結果から、 PPYFe が PPYA よりも高い酸素還元活性を示すことが明ら かになった。特に 900℃ での熱処理により得られ た PPYFe900は,我々が今まで得ている鉄及びコバ ルトフタロシアニンと熱硬化性樹脂混合物系の熱 処理物と同様の酸素還元活性を示している、

そこで、各々の試料のXPSスペクトル及び固体¹⁵ NNMRスペクトルとXPSスペクトルを測定した。 その結果、すべての試料において、ピリジン型、グ ラファイト型、ピロール型に由来する信号が、XPS、 NMRどちらのスペクトルにも観測された。酸素還 元活性の高い試料においては、ピロール型窒素の大 きな減少が見られることがわかった。

Fig.1 Oxygen reduction voltammograms of the pyrolyzed polypyrroles.

Fig.2 N1s XPS spectra of the pyrolyzed polypyrroles.

pyridine graphite pyrrole

Fig.3 ¹⁵N CP/MAS NMR spectra of the pyrolyzed polypyrroles.

[謝辞] 本研究は NEDO 産業技術研究助成事業により実施された。

[1]Bashyam, R.; Zelenay, P. Nature 2006, 443, 63-66.

[2] Ozaki, J.; Nozawa, K.; Yamada, K.; Uchiyama, Y.; Furuichi, A.; Yokoyama, T.; Oya, A.; Brown, L.J.; Cashion J.D. J.Appl.Electrochem. 2006, 36, 239-247. 3L10
²⁷Al 固体NMRによるAl-MCM-41の表面Al 種の配位数変化の 観測
○高橋利和¹,岩浪克之¹,林 繁信²,坂倉利康¹,安田弘之¹
¹産業技術総合研究所 環境化学技術研究部門
²産業技術総合研究所 計測フロンティア研究部門

Coordination Number Change of Surface Al Species on Al-MCM-41 Observed by ²⁷Al Solid-State NMR

 \bigcirc Toshikazu Takahashi¹, Katsuyuki Iwanami¹, Shigenobu Hayashi², Toshiyasu Sakakura¹, Hiroyuki Yasuda¹

¹Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

²*Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan..*

The specific catalytic activity of Al-MCM-41(Si/Al=20) towards cyano-silylation and related reactions concerning with carbonyl compounds was elucidated by structure analysis using solid-state NMR methods. A ²⁷Al MAS spectrum of Al-MCM-41 with simple excitation using 15° flip angle showed hexa-coordinated Al species (denoted as Al^{VI}). This signal disappeared when the acidic protons on the catalyst surface was substituted by Na⁺ through NaNO₃ aq treatment. The re-protonated Al-MCM-41, which was prepared by substitution of the surface Na⁺ to H⁺ through NH₄Cl aq treatment and subsequent calcinations, showed Al^{VI} signals again. The Si/Al ratio obtained from XRF data showed no apparent change during these procedures. Amorphous silica-alumina (Si/Al=20) (denoted as ASA20) showed almost negligible signal around Al^{VI} region and this feature is not changed during the same substitution procedures. Thus the catalytic activities of these materials were coincident with the existence of Al^{VI} species on it. This evidence strongly suggests that the surface Al^{VI} species is the active site.

【はじめに】 われわれはヘキサゴナル規則性細孔を有するメソポーラスシリカ A1-MCM-41 (Si/A1=20) がカルボニル化合物のシアノシリル化反応の効率よい触媒と なることを見出した。 (2008, Chem. Comm., スキーム)。同じ触媒は最近向山アルド

PhCHO + TMSCN - (1.0 mmol) (1.2 equiv.)	Al-MCM-41 CH₂Cl₂, r.t., 1min	OTMS Ph CN 100 %	ール反応や細見アリル化反 にも効果を示すことが明ら かにされた。この触媒活性 にとってA1が必須であるこ と、A1-0(H ⁺)-Siのような
形で存在すると考えられる酸性プロトン(H ⁺)が必須であることが明らかにされている。			

²⁷Al MAS Spectra, Al-MCM-41 catalyst, proton exchange

○たかはしとしかず,いわなみかつゆき、はやししげのぶ、さかくらとしやす、やす だひろゆき このような架橋酸素上の H⁺はしばしばシリカ、アルミナ単独では発現し得ない強い 酸性を示すことが知られている。しかし同様の酸性 H⁺を有するアモルファスシリカ アルミナ (ASA) にはほとんど活性が見いだされない。A1-MCM-41触媒の固体NMR実験 から、サンプルの化学処理によって六配位A1のシグナルが生成、消滅を繰り返すこと が明らかになったので報告する。

【実験】A1-MCM-41 (Si/A1=20) はセチルトリメチルアンモニウムブロミドをテンプレ ートとして、コロイダルシリカとアルミン酸ナトリウムの水熱合成によって合成し、 550℃で焼成して得た。窒素吸着実験、小角X線散乱実験等によりヘキサゴナル規則性 細孔構造をもつことを確認した。表面積は約970 m²/gであった。また同じ条件でテン プレートを加えずにアモルファスシリカアルミナASA20を合成した。表面積は約160 m²/gであった。酸性H⁺のNa⁺置換は1M NaNO₃水溶液中で6 hリフラックスしたのち、ろ過、 洗浄、乾燥によって得た。Na⁺体のH⁺置換については1M NH₄C1水溶液中で6 hリフラッ クスし、ろ過、洗浄、乾燥に至る一連の操作を3回繰り返してNH₄⁺体を得、これを焼成 して得た。またこれらの置換操作の前後でSi/A1比が変化していないことをXRFによっ て確認した。固体NMRは4mm MAS プローブを備えたBruker AVANCE NMR装置(v₀^H=400.13 MHz)を用いた。²⁷A1の標準物質として1M 硝酸アルミニウム水溶液を用い(0 ppm)、各 パルス強度におけるNutation速度の標定も行った。シングルパルス測定においてはシ グナルの比ができる限り核種の存在比を再現するように15^oパルスを用いた。

【結果・考察】A1-MCM-41の²⁷A1スペクトル(a)には 50 ppm付近に四配位(A1^{IV})、0 ppm 付近に六配位(A1^{VI})のアルミからなるピークがそれぞれ確認された。A1-MCM-41表面 の酸性プロトンをNa⁺で置換するとA1^{VI}がほとんど消滅し、A1^{IV}のシグナルのみが残る (b)。仮にこの変化がA1^{VI}の脱離によるものと仮定すると、A1の総量は置換後に大幅に 低下する筈である。実際にはXRFの結果において有意なSi/A1比の変化が見られないた め、この仮説は否定され、なんらかの過程を経てA1^{VI}→A1^{IV}の変化が起こったと考えざ

るを得ない。またこの結果から、観測 されるAl^{VI}のほとんどすべてが表面付 近にあると結論づけられる。次にNa⁺型 A1-MCM-41を再度置換しなおして得たH⁺ 体サンプル(c)についてみると、A1^{VI}に 基づくシグナルが復活していることが わかる。またASA20について同様に調製 したH⁺体(d)、Na⁺体(e)のスペクトルを 比較してみると、いずれもAl^{VI}はほとん ど存在しないことがわかる。A1-MCM-41 の触媒活性についてはNa⁺体はなく、H⁺ 体、再H⁺体だけが強い活性を持つことが わかっている。一方、ASA20の触媒活性 はH⁺体、Na⁺体にかかわらずほとんどな い。このことから、表面に局在するA1^{VI} こそが活性サイトの有力な候補と考え られる。本研究は新エネルギー・産業 技術総合開発機構 (NEDO)の支援の下 に行われた。

Fig. 1 ²⁷Al Simple excitation MAS spectra of Al-MCM41(a-c) and ASA20(d,e). The conditions of each spectrum are described in the text.

 3L11
アンフォテリシンBチャネル複合体における分子間相互 作用の固体NMR解析
〇松森信明,梅川雄一,多原主哲,土居幹嗣,大石徹,村田道雄 阪大院理

Solid-State NMR Studies on Intermolecular Interactions of Ion Channel Complex Formed by Amphotericin B

○Nobuaki Matsumori, Yuichi Umegawa, Kazuaki Tahara, Mokotsugu Doi, Tohru Oishi, and Michio Murata

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.

Although amphotericin B (AmB) is thought to exert its antifungal activity by forming ion-channel together with ergosterol, no previous study has directly proven the AmB-ergosterol interaction. To establish the interaction, we measured solid-state ²H NMR using deuterated sterols and AmB. The spectra showed that fast axial rotation of erogosterol was inhibited by the coexistence of AmB, whereas that of cholesterol was essentially unchanged by AmB, thus demonstrating that ergosterol has significant interaction with AmB.

Then, to further confirm the direct interaction between AmB and ergosterol, we measured ¹³C-¹⁹F REDOR using ¹⁹F-AmB and ¹³C-ergosterol. The results unexpectedly revealed that the AmB-ergosterol interaction occurs not only in a parallel manner but also in an antiparallel orientation. Based on these results, we will propose a model of AmB-sterol interaction.

ポリエンマクロライド系抗生物質アンフォテリシンB(AmB)は、脂質膜中でイオン 透過性チャネル複合体を形成し、抗真菌活性を発揮する。AmBはステロールと相互作 用してチャネル複合体を形成すると考えられており、その選択毒性は、ヒト細胞膜に 含まれるコレステロールに比べて、真菌細胞膜に含まれるエルゴステロールに対する 親和性の高さに起因するとされている。しかし、AmBとステロールの分子間相互作用 を直接観測した研究はまだない。そこで我々はまず重水素標識したステロール(Erg-d,

アンフォテリシンB, 脂質二重膜, 固体NMR

○まつもりのぶあき,うめがわゆういち,たはらかずあき,どいもとつぐ,おおいし とおる,むらたみちお Cho-d_iおよびErg-d_iは化学合成によって調製した。これらの重水素化ステロールを 用いて、不飽和リン脂質であるPOPC (palmitoyloleoylphosphatidylcholine) 膜中に おける²H NMRを測定した。Erg-d_iは粉末状態で114 kHz程度の四極子分裂を示すが、POPC 膜中では高速で軸回転運動をしているため、Fig. 1aのように分裂幅が39 kHz程度にな る。次にAmB含有POPC膜でErg-d_iの²H NMRを測定すると、Fig. 1bに示すようにシグナル が顕著にブロードニングした。これはAmBとの相互作用によってエルゴステロールの 回転運動が阻害されたためと考えられる。Cho-d_iを用いて同様の測定を行ったが、AmB を共存させても運動性の低下がみられなかったことから(Fig. 2)、コレステロールは AmBとほとんど相互作用していないことが確認された。

Fig. 1 ²H NMR spectra of Erg-*d*₁ in POPC bilayers a) Erg-*d*₁:POPC = 1:18 b) Erg-*d*₁:AmB:POPC = 1:2:18

Fig. 2 ²H NMR spectra of Cho- d_1 in POPC bilayers a) Cho- d_1 :POPC = 1:18 b) Cho- d_1 :AmB:POPC = 1:2:18

また、AmB生産菌に3-d。プロピオン酸ナトリウムを取り込ませて生合成的に調製した AmB-d。を用いて、POPC膜中におけるAmBの運動性についても検討した。その結果、AmB は膜中でほぼ静止しているが、エルゴステロール含有膜ではAmBの運動性が増加する ことが明らかとなった。つまり、AmBとエルゴステロールが共存すると、両者の運動 性が近くなることが示された。このように、²H NMRを用いてAmBとエルゴステロールが 直接相互作用していることを初めて実験的に示すことができた。

一方、脂質膜を不飽和リン脂質のPOPCから飽和リン脂質DMPC (dimyristoyl phosphatidylcholine) に変えて²H NMRを測定すると、AmBとエルゴステロールの相互 作用がほとんど検出されなかった。これは、AmBとDMPC間の相互作用が強いため、AmB-エルゴステロール相互作用が相対的に弱められたためと考えられる。このように、AmB とステロール間の相互作用はリン脂質の種類に依存することも明らかとなった。

次に、AmBとステロール間の相互作用を直接観測するために、¹³C標識したエルゴス テロール及び14位にFを導入した14-F-AmBを調製し²⁾、¹³C-¹⁹F REDOR法による分子間相 互作用の観測を行った。¹³Cエルゴステロールは酵母菌に2-¹³C酢酸ナトリウムを取り込 ませて生合成的に調製し、14-F-AmBはAmBから化学的に誘導した。上記と同様にPOPC 膜中で両標識体を混合し、分子間で¹³C-¹⁹F REDORを測定した。その結果、REDORはエル ゴステロールの19位メチル基だけでなく、26,27位メチル基にも観測された。このこ とは、AmBとエルゴステロールは平行に並んで相互作用しているだけでなく、逆平行 の配向も存在していることを示唆している。このように、AmBとエルゴステロールの 分子間相互作用の直接観測に初めて成功した。

以上の結果に基づいて、AmBとステロールの相互作用モデルについても議論する。

References

¹⁾ Matsumori N. et al. J. Am. Chem. Soc. 2009, 131, 11855.

²⁾ Matsumori N. et al. Bioorg. Med. Chem. Lett. 2005, 15, 3565.