フッ素化ヘム再構成ヘモグロビンの ¹⁹F NMRによる機能解析

筑波大院数物¹, 長岡高専物質² 〇水関和哉¹, 太虎林¹, 長友重紀¹, 山本泰彦¹, 鈴木秋弘²

Functional Analysis of ¹⁹F NMR of Reconstituted Hemoglobin Possessing Fluorinated Heme

 OKazuya Mizuseki¹, Hulin Tai¹, Shigenori Nagatomo¹, Yasuhiko Yamamoto¹, and Akihiro Suzuki²
Dept. of Chem., Univ. of Tsukuba¹ and Nagaoka Natl. Coll. of Tech.²

Taking advantages of ¹⁹F NMR, we have shown that the introduction of fluorinated hemes into *b*-type hemoproteins provides spectroscopic probes highly sensitive to heme electronic nature which is relevant to functional properties of the proteins. In the present study, we elucidated oxygen binding of the individual subunits of human adult hemoglobin (Hb A). The study demonstrated that the incorporation of a C_2 -symmetrically fluorinated heme into the protein results in a significant non-equivalence between the oxygen binding affinities of the subunits. This finding indicated the significance of the heme-protein interaction in the regulation of the functional properties of Hb A.

【序論】

成人ヘモグロビン(Hb A)は、 $\alpha_2\beta_2$ の四 量体として存在する分子量約64500の代表的 なヘムタンパク質であり、生体内で酸素運搬 の役割を果たしている。Hb Aの機能を解明す るためには、補欠分子族として存在するヘム (Fig. 1, $R_2 = R_7 = -CH_3$, $R_3 = R_8 = -CH = CH_2$)の 電子構造や、ヘム近傍のタンパク質の立体構 造について明らかにすることが重要である。 ¹H NMRによるHb Aの研究では、観測されるシ グナルのオーバーラップにより、スペクトル の解析が困難である(Fig. 2)。本研究では、生 体内にはほとんど含まれないフッ素をヘム側 鎖に導入したフッ素化ヘムを用いて、¹⁹F NMR によるHb A の研究の可能性を検証した。

Fig. 1. The structures and numbering system for protoheme ($R_2 = R_7 = -CH_3$, $R_3 = R_8 = -CH=CH_2$) and 2,8-DPF ($R_2 = R_8 = -CF_3$, $R_3 = R_7 = -CH_3$).

【実験】

天然のHb Aから、Teale (1959)の方法に従って、ヘムを除去し、その後ヘムの側鎖 にCF₃基を導入した*C*₂対称2,8-DPFフッ素化ヘム(Fig.1, R₂ = R₈ = -CF₃, R₃ = R₇ = -CH₃) を組み込んで、2,8-DPF 再構成Hb A[Hb A(2,8-DPF)]を調製した。Hb A(2,8-DPF)をジチ オナイトにより還元して、oxy体とし、機能測定及び¹⁹F NMR測定を行った。なお、 Deoxy体はOxy体を脱気して調製した。

Keywords: ¹⁹F NMR、ヘモグロビン、酸素親和性、常磁性シフト、フッ素化ヘム みずせき かずや、たい こりん、ながとも しげのり、やまもと やすひこ、 すずき あきひろ

【結果・考察】

<u>機能解析</u>: Hb A(2,8-DPF)の酸素親和性 と協同性の指標である50%酸素化が達成 される酸素分圧 (P_{50}) と協同性を反映す るHill係数 (n) を、Hb Aでの対応する値 と比較してTable 1にまとめて示す。Hb A(2,8-DPF)は、Hb Aより酸素親和性と協 同性が共に低下しているが、酸素運搬体 としての機能は保持されていることが確 認された。

構造解析:Oxy体、Deoxy体、及び Oxy-Deoxy中間体のスペクトル測定を行 った(Fig. 3)。Oxy-Deoxy中間体のスペク トルでは、Oxy体およびDeoxy体由来のシ グナルが共に観測された。また、Deoxy 体のヘム8位CF3基由来のシグナル1つは、 Oxy体のシグナルと重なって観測された。 Oxy-Deoxy中間体で観測されたそれぞれ のシグナル強度の解析から、一方のサブ ユニットのDeoxy体のシグナル強度が、 もう一方のDeoxy体のシグナル強度の約 2.5倍であることが明らかとなり、2つの サブユニットで酸素親和性が異なること が示された。一方、天然のHb Aでは、 α , β の酸素親和性には大差無いことが示され ている。これは、Hb AとHb A(2,8-DPF) とで、ヘム側鎖置換基の違いにより、ヘ ム近傍タンパク質との相互作用が異なる ことに起因すると考えられる。本研究で 用いた2.8-DPFは、プロトヘムと比較す ると、3.8位のビニル基がそれぞれCH3基 とCF3基に置換され、また、2,8-DPFの分 子構造はC₂対称である(Fig.1)。HbAでは、 ヘム側鎖ビニル基が機能に与える影響が 大きいと考えられているため、HbA (2.8-DPF)における結果は、そのことを支 持している。ヘム側鎖の置換基の変化に よりヘムとタンパク質との相互作用が変 化し、その変化がHb Aの四次構造変化に 影響を与え、結果的に酸素親和性が変化 したものと推測される。

【結論】

フッ素化ヘム再構成Hb Aの¹⁹F NMR研究は、Hb Aの機能解析に有用であることが示 された。Hb A(2,8-DPF)においては、天然のHb Aとは異なり、各サブユニットの酸素 親和性が異なる事が示唆された。

1.g. ... III (i) III (

Table	1.	Oxygen	bindings	properties
Lanc			~ manings	properties

	P₅₀ ^a (mmHg)	n ^b	
2,8-DPF Hb A	8.9	1.64	
Native HbA	5.9	2.99	

a : Partical pressure of O_2 at [Deoxy Hb]=[Oxy Hb].

b : Hill coefficient representing the cooperativety.

Fig. 3. ¹⁹F NMR spectra of (A)oxy Hb A(2,8-DPF), (B) Hb A(2,8-DPF) intermediate state and (C)deoxy Hb A(2,8-DPF), 25° C and pH 7.0. As shown with the spectra, the assignments of the signals to the individual subunits were not completed at the present.