My Research with ESR, NMR and MRI
Tokuko Watanabe
Aoyama Gakuin Women's Junior College

In this talk, I would like to overview my works done together with my colleagues and students, mainly by using NMR methods. Topics are as follows:

- Multiexponential proton relaxation processes of compartmentalized water in gels such as sephadex gels and starch sol and gels.
- Sol/gel transition processes and the network structures of the microbial polysaccharide gellan gum hydrogels, gelatin, and starch gels by 1H-NMR relaxation measurement, water diffusion phenomena and circular dichroism methods.
- Theoretical analysis of water 1H-T$_2$, based on chemical exchange and polysaccharide mobility during gelation.
- Studies on clay components such as allophone, imogolite, and kaolinite by high-resolution solid-state 29Si- and 27Al-NMR and ESR: 29Si-T$_1$ relaxation, structural variation with SiO$_2$/Al$_2$O$_3$, and thermal transformation.
- Solid state NMR for materials, such as Yttrium compounds, Boron Carbide, by 89Y, 27Al, 13C, 11B nuclei.
- Development of contrast agents for MRI and evaluation as a new experimental models for MRI.